Theory HOL.SMT
section ‹Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2›
theory SMT
imports Numeral_Simprocs
keywords "smt_status" :: diag
begin
subsection ‹A skolemization tactic and proof method›
lemma ex_iff_push: "(∃y. P ⟷ Q y) ⟷ (P ⟶ (∃y. Q y)) ∧ ((∀y. Q y) ⟶ P)"
by metis
ML ‹
fun moura_tac ctxt =
TRY o Atomize_Elim.atomize_elim_tac ctxt THEN'
REPEAT o EqSubst.eqsubst_tac ctxt [0]
@{thms choice_iff[symmetric] bchoice_iff[symmetric]} THEN'
TRY o Simplifier.asm_full_simp_tac
(clear_simpset ctxt addsimps @{thms all_simps ex_simps ex_iff_push}) THEN_ALL_NEW
Metis_Tactic.metis_tac (take 1 ATP_Proof_Reconstruct.partial_type_encs)
ATP_Proof_Reconstruct.default_metis_lam_trans ctxt []
›
method_setup moura = ‹
Scan.succeed (SIMPLE_METHOD' o moura_tac)
› "solve skolemization goals, especially those arising from Z3 proofs"
hide_fact (open) ex_iff_push
subsection ‹Triggers for quantifier instantiation›
text ‹
Some SMT solvers support patterns as a quantifier instantiation
heuristics. Patterns may either be positive terms (tagged by "pat")
triggering quantifier instantiations -- when the solver finds a
term matching a positive pattern, it instantiates the corresponding
quantifier accordingly -- or negative terms (tagged by "nopat")
inhibiting quantifier instantiations. A list of patterns
of the same kind is called a multipattern, and all patterns in a
multipattern are considered conjunctively for quantifier instantiation.
A list of multipatterns is called a trigger, and their multipatterns
act disjunctively during quantifier instantiation. Each multipattern
should mention at least all quantified variables of the preceding
quantifier block.
›
typedecl 'a symb_list
consts
Symb_Nil :: "'a symb_list"
Symb_Cons :: "'a ⇒ 'a symb_list ⇒ 'a symb_list"
typedecl pattern
consts
pat :: "'a ⇒ pattern"
nopat :: "'a ⇒ pattern"
definition trigger :: "pattern symb_list symb_list ⇒ bool ⇒ bool" where
"trigger _ P = P"
subsection ‹Higher-order encoding›
text ‹
Application is made explicit for constants occurring with varying
numbers of arguments. This is achieved by the introduction of the
following constant.
›
definition fun_app :: "'a ⇒ 'a" where "fun_app f = f"
text ‹
Some solvers support a theory of arrays which can be used to encode
higher-order functions. The following set of lemmas specifies the
properties of such (extensional) arrays.
›
lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other fun_upd_upd fun_app_def
subsection ‹Normalization›
lemma case_bool_if[abs_def]: "case_bool x y P = (if P then x else y)"
by simp
lemmas Ex1_def_raw = Ex1_def[abs_def]
lemmas Ball_def_raw = Ball_def[abs_def]
lemmas Bex_def_raw = Bex_def[abs_def]
lemmas abs_if_raw = abs_if[abs_def]
lemmas min_def_raw = min_def[abs_def]
lemmas max_def_raw = max_def[abs_def]
lemma nat_zero_as_int:
"0 = nat 0"
by simp
lemma nat_one_as_int:
"1 = nat 1"
by simp
lemma nat_numeral_as_int: "numeral = (λi. nat (numeral i))" by simp
lemma nat_less_as_int: "(<) = (λa b. int a < int b)" by simp
lemma nat_leq_as_int: "(≤) = (λa b. int a ≤ int b)" by simp
lemma Suc_as_int: "Suc = (λa. nat (int a + 1))" by (rule ext) simp
lemma nat_plus_as_int: "(+) = (λa b. nat (int a + int b))" by (rule ext)+ simp
lemma nat_minus_as_int: "(-) = (λa b. nat (int a - int b))" by (rule ext)+ simp
lemma nat_times_as_int: "(*) = (λa b. nat (int a * int b))" by (simp add: nat_mult_distrib)
lemma nat_div_as_int: "(div) = (λa b. nat (int a div int b))" by (simp add: nat_div_distrib)
lemma nat_mod_as_int: "(mod) = (λa b. nat (int a mod int b))" by (simp add: nat_mod_distrib)
lemma int_Suc: "int (Suc n) = int n + 1" by simp
lemma int_plus: "int (n + m) = int n + int m" by (rule of_nat_add)
lemma int_minus: "int (n - m) = int (nat (int n - int m))" by auto
lemma nat_int_comparison:
fixes a b :: nat
shows "(a = b) = (int a = int b)"
and "(a < b) = (int a < int b)"
and "(a ≤ b) = (int a ≤ int b)"
by simp_all
lemma int_ops:
fixes a b :: nat
shows "int 0 = 0"
and "int 1 = 1"
and "int (numeral n) = numeral n"
and "int (Suc a) = int a + 1"
and "int (a + b) = int a + int b"
and "int (a - b) = (if int a < int b then 0 else int a - int b)"
and "int (a * b) = int a * int b"
and "int (a div b) = int a div int b"
and "int (a mod b) = int a mod int b"
by (auto intro: zdiv_int zmod_int)
lemma int_if:
fixes a b :: nat
shows "int (if P then a else b) = (if P then int a else int b)"
by simp
subsection ‹Integer division and modulo for Z3›
text ‹
The following Z3-inspired definitions are overspecified for the case where ‹l = 0›. This
Schönheitsfehler is corrected in the ‹div_as_z3div› and ‹mod_as_z3mod› theorems.
›
definition z3div :: "int ⇒ int ⇒ int" where
"z3div k l = (if l ≥ 0 then k div l else - (k div - l))"
definition z3mod :: "int ⇒ int ⇒ int" where
"z3mod k l = k mod (if l ≥ 0 then l else - l)"
lemma div_as_z3div:
"∀k l. k div l = (if l = 0 then 0 else if l > 0 then z3div k l else z3div (- k) (- l))"
by (simp add: z3div_def)
lemma mod_as_z3mod:
"∀k l. k mod l = (if l = 0 then k else if l > 0 then z3mod k l else - z3mod (- k) (- l))"
by (simp add: z3mod_def)
subsection ‹Extra theorems for veriT reconstruction›
lemma verit_sko_forall: ‹(∀x. P x) ⟷ P (SOME x. ¬P x)›
using someI[of ‹λx. ¬P x›]
by auto
lemma verit_sko_forall': ‹P (SOME x. ¬P x) = A ⟹ (∀x. P x) = A›
by (subst verit_sko_forall)
lemma verit_sko_forall'': ‹B = A ⟹ (SOME x. P x) = A ≡ (SOME x. P x) = B›
by auto
lemma verit_sko_forall_indirect: ‹x = (SOME x. ¬P x) ⟹ (∀x. P x) ⟷ P x›
using someI[of ‹λx. ¬P x›]
by auto
lemma verit_sko_forall_indirect2:
‹x = (SOME x. ¬P x) ⟹ (⋀x :: 'a. (P x = P' x)) ⟹(∀x. P' x) ⟷ P x›
using someI[of ‹λx. ¬P x›]
by auto
lemma verit_sko_ex: ‹(∃x. P x) ⟷ P (SOME x. P x)›
using someI[of ‹λx. P x›]
by auto
lemma verit_sko_ex': ‹P (SOME x. P x) = A ⟹ (∃x. P x) = A›
by (subst verit_sko_ex)
lemma verit_sko_ex_indirect: ‹x = (SOME x. P x) ⟹ (∃x. P x) ⟷ P x›
using someI[of ‹λx. P x›]
by auto
lemma verit_sko_ex_indirect2: ‹x = (SOME x. P x) ⟹ (⋀x. P x = P' x) ⟹ (∃x. P' x) ⟷ P x›
using someI[of ‹λx. P x›]
by auto
lemma verit_Pure_trans:
‹P ≡ Q ⟹ Q ⟹ P›
by auto
lemma verit_if_cong:
assumes ‹b ≡ c›
and ‹c ⟹ x ≡ u›
and ‹¬ c ⟹ y ≡ v›
shows ‹(if b then x else y) ≡ (if c then u else v)›
using assms if_cong[of b c x u] by auto
lemma verit_if_weak_cong':
‹b ≡ c ⟹ (if b then x else y) ≡ (if c then x else y)›
by auto
lemma verit_or_neg:
‹(A ⟹ B) ⟹ B ∨ ¬A›
‹(¬A ⟹ B) ⟹ B ∨ A›
by auto
lemma verit_subst_bool: ‹P ⟹ f True ⟹ f P›
by auto
lemma verit_and_pos:
‹(a ⟹ ¬(b ∧ c) ∨ A) ⟹ ¬(a ∧ b ∧ c) ∨ A›
‹(a ⟹ b ⟹ A) ⟹ ¬(a ∧ b) ∨ A›
by blast+
lemma verit_farkas:
‹(a ⟹ A) ⟹ ¬a ∨ A›
‹(¬a ⟹ A) ⟹ a ∨ A›
by blast+
lemma verit_or_pos:
‹A ∧ A' ⟹ (c ∧ A) ∨ (¬c ∧ A')›
‹A ∧ A' ⟹ (¬c ∧ A) ∨ (c ∧ A')›
by blast+
lemma verit_la_generic:
‹(a::int) ≤ x ∨ a = x ∨ a ≥ x›
by linarith
lemma verit_bfun_elim:
‹(if b then P True else P False) = P b›
‹(∀b. P' b) = (P' False ∧ P' True)›
‹(∃b. P' b) = (P' False ∨ P' True)›
by (cases b) (auto simp: all_bool_eq ex_bool_eq)
lemma verit_eq_true_simplify:
‹(P = True) ≡ P›
by auto
lemma verit_and_neg:
‹(a ⟹ ¬b ∨ A) ⟹ ¬(a ∧ b) ∨ A›
‹(a ⟹ A) ⟹ ¬a ∨ A›
‹(¬a ⟹ A) ⟹ a ∨ A›
by blast+
lemma verit_forall_inst:
‹A ⟷ B ⟹ ¬A ∨ B›
‹¬A ⟷ B ⟹ A ∨ B›
‹A ⟷ B ⟹ ¬B ∨ A›
‹A ⟷ ¬B ⟹ B ∨ A›
‹A ⟶ B ⟹ ¬A ∨ B›
‹¬A ⟶ B ⟹ A ∨ B›
by blast+
lemma verit_eq_transitive:
‹A = B ⟹ B = C ⟹ A = C›
‹A = B ⟹ C = B ⟹ A = C›
‹B = A ⟹ B = C ⟹ A = C›
‹B = A ⟹ C = B ⟹ A = C›
by auto
lemma verit_bool_simplify:
‹¬(P ⟶ Q) ⟷ P ∧ ¬Q›
‹¬(P ∨ Q) ⟷ ¬P ∧ ¬Q›
‹¬(P ∧ Q) ⟷ ¬P ∨ ¬Q›
‹(P ⟶ (Q ⟶ R)) ⟷ ((P ∧ Q) ⟶ R)›
‹((P ⟶ Q) ⟶ Q) ⟷ P ∨ Q›
‹(Q ⟷ (P ∨ Q)) ⟷ (P ⟶ Q)›
‹P ∧ (P ⟶ Q) ⟷ P ∧ Q›
‹(P ⟶ Q) ∧ P ⟷ P ∧ Q›
unfolding not_imp imp_conjL
by auto
text ‹We need the last equation for \<^term>‹¬(∀a b. ¬P a b)››
lemma verit_connective_def:
‹(A = B) ⟷ ((A ⟶ B) ∧ (B ⟶ A))›
‹(If A B C) = ((A ⟶ B) ∧ (¬A ⟶ C))›
‹(∃x. P x) ⟷ ¬(∀x. ¬P x)›
‹¬(∃x. P x) ⟷ (∀x. ¬P x)›
by auto
lemma verit_ite_simplify:
‹(If True B C) = B›
‹(If False B C) = C›
‹(If A' B B) = B›
‹(If (¬A') B C) = (If A' C B)›
‹(If c (If c A B) C) = (If c A C)›
‹(If c C (If c A B)) = (If c C B)›
‹(If A' True False) = A'›
‹(If A' False True) ⟷ ¬A'›
‹(If A' True B') ⟷ A'∨B'›
‹(If A' B' False) ⟷ A'∧B'›
‹(If A' False B') ⟷ ¬A'∧B'›
‹(If A' B' True) ⟷ ¬A'∨B'›
‹x ∧ True ⟷ x›
‹x ∨ False ⟷ x›
for B C :: 'a and A' B' C' :: bool
by auto
lemma verit_and_simplify1:
‹True ∧ b ⟷ b› ‹b ∧ True ⟷ b›
‹False ∧ b ⟷ False› ‹b ∧ False ⟷ False›
‹(c ∧ ¬c) ⟷ False› ‹(¬c ∧ c) ⟷ False›
‹¬¬a = a›
by auto
lemmas verit_and_simplify = conj_ac de_Morgan_conj disj_not1
lemma verit_or_simplify_1:
‹False ∨ b ⟷ b› ‹b ∨ False ⟷ b›
‹b ∨ ¬b›
‹¬b ∨ b›
by auto
lemmas verit_or_simplify = disj_ac
lemma verit_not_simplify:
‹¬ ¬b ⟷ b› ‹¬True ⟷ False› ‹¬False ⟷ True›
by auto
lemma verit_implies_simplify:
‹(¬a ⟶ ¬b) ⟷ (b ⟶ a)›
‹(False ⟶ a) ⟷ True›
‹(a ⟶ True) ⟷ True›
‹(True ⟶ a) ⟷ a›
‹(a ⟶ False) ⟷ ¬a›
‹(a ⟶ a) ⟷ True›
‹(¬a ⟶ a) ⟷ a›
‹(a ⟶ ¬a) ⟷ ¬a›
‹((a ⟶ b) ⟶ b) ⟷ a ∨ b›
by auto
lemma verit_equiv_simplify:
‹((¬a) = (¬b)) ⟷ (a = b)›
‹(a = a) ⟷ True›
‹(a = (¬a)) ⟷ False›
‹((¬a) = a) ⟷ False›
‹(True = a) ⟷ a›
‹(a = True) ⟷ a›
‹(False = a) ⟷ ¬a›
‹(a = False) ⟷ ¬a›
‹¬¬a ⟷ a›
‹(¬ False) = True›
for a b :: bool
by auto
lemmas verit_eq_simplify =
semiring_char_0_class.eq_numeral_simps eq_refl zero_neq_one num.simps
neg_equal_zero equal_neg_zero one_neq_zero neg_equal_iff_equal
lemma verit_minus_simplify:
‹(a :: 'a :: cancel_comm_monoid_add) - a = 0›
‹(a :: 'a :: cancel_comm_monoid_add) - 0 = a›
‹0 - (b :: 'b :: {group_add}) = -b›
‹- (- (b :: 'b :: group_add)) = b›
by auto
lemma verit_sum_simplify:
‹(a :: 'a :: cancel_comm_monoid_add) + 0 = a›
by auto
lemmas verit_prod_simplify =
mult_1
mult_1_right
lemma verit_comp_simplify1:
‹(a :: 'a ::order) < a ⟷ False›
‹a ≤ a›
‹¬(b' ≤ a') ⟷ (a' :: 'b :: linorder) < b'›
by auto
lemmas verit_comp_simplify =
verit_comp_simplify1
le_numeral_simps
le_num_simps
less_numeral_simps
less_num_simps
zero_less_one
zero_le_one
less_neg_numeral_simps
lemma verit_la_disequality:
‹(a :: 'a ::linorder) = b ∨ ¬a ≤ b ∨ ¬b ≤ a›
by auto
context
begin
text ‹For the reconstruction, we need to keep the order of the arguments.›
named_theorems smt_arith_multiplication ‹Theorems to reconstruct arithmetic theorems.›
named_theorems smt_arith_combine ‹Theorems to reconstruct arithmetic theorems.›
named_theorems smt_arith_simplify ‹Theorems to combine theorems in the LA procedure›
lemmas [smt_arith_simplify] =
div_add dvd_numeral_simp divmod_steps less_num_simps le_num_simps if_True if_False divmod_cancel
dvd_mult dvd_mult2 less_irrefl prod.case numeral_plus_one divmod_step_def order.refl le_zero_eq
le_numeral_simps less_numeral_simps mult.right_neutral simp_thms divides_aux_eq
mult_nonneg_nonneg dvd_imp_mod_0 dvd_add zero_less_one mod_mult_self4 numeral_mod_numeral
divmod_trivial prod.sel mult.left_neutral div_pos_pos_trivial arith_simps div_add div_mult_self1
add_le_cancel_left add_le_same_cancel2 not_one_le_zero le_numeral_simps add_le_same_cancel1
zero_neq_one zero_le_one le_num_simps add_Suc mod_div_trivial nat.distinct mult_minus_right
add.inverse_inverse distrib_left_numeral mult_num_simps numeral_times_numeral add_num_simps
divmod_steps rel_simps if_True if_False numeral_div_numeral divmod_cancel prod.case
add_num_simps one_plus_numeral fst_conv arith_simps sub_num_simps dbl_inc_simps
dbl_simps mult_1 add_le_cancel_right left_diff_distrib_numeral add_uminus_conv_diff zero_neq_one
zero_le_one One_nat_def add_Suc mod_div_trivial nat.distinct of_int_1 numerals numeral_One
of_int_numeral add_uminus_conv_diff zle_diff1_eq add_less_same_cancel2 minus_add_distrib
add_uminus_conv_diff mult.left_neutral semiring_class.distrib_right
add_diff_cancel_left' add_diff_eq ring_distribs mult_minus_left minus_diff_eq
lemma [smt_arith_simplify]:
‹¬ (a' :: 'a :: linorder) < b' ⟷ b' ≤ a'›
‹¬ (a' :: 'a :: linorder) ≤ b' ⟷ b' < a'›
‹(c::int) mod Numeral1 = 0›
‹(a::nat) mod Numeral1 = 0›
‹(c::int) div Numeral1 = c›
‹a div Numeral1 = a›
‹(c::int) mod 1 = 0›
‹a mod 1 = 0›
‹(c::int) div 1 = c›
‹a div 1 = a›
‹¬(a' ≠ b') ⟷ a' = b'›
by auto
lemma div_mod_decomp: "A = (A div n) * n + (A mod n)" for A :: nat
by auto
lemma div_less_mono:
fixes A B :: nat
assumes "A < B" "0 < n" and
mod: "A mod n = 0""B mod n = 0"
shows "(A div n) < (B div n)"
proof -
show ?thesis
using assms(1)
apply (subst (asm) div_mod_decomp[of "A" n])
apply (subst (asm) div_mod_decomp[of "B" n])
unfolding mod
by (use assms(2,3) in ‹auto simp: ac_simps›)
qed
lemma verit_le_mono_div:
fixes A B :: nat
assumes "A < B" "0 < n"
shows "(A div n) + (if B mod n = 0 then 1 else 0) ≤ (B div n)"
by (auto simp: ac_simps Suc_leI assms less_mult_imp_div_less div_le_mono less_imp_le_nat)
lemmas [smt_arith_multiplication] =
verit_le_mono_div[THEN mult_le_mono1, unfolded add_mult_distrib]
div_le_mono[THEN mult_le_mono2, unfolded add_mult_distrib]
lemma div_mod_decomp_int: "A = (A div n) * n + (A mod n)" for A :: int
by auto
lemma zdiv_mono_strict:
fixes A B :: int
assumes "A < B" "0 < n" and
mod: "A mod n = 0""B mod n = 0"
shows "(A div n) < (B div n)"
proof -
show ?thesis
using assms(1)
apply (subst (asm) div_mod_decomp_int[of A n])
apply (subst (asm) div_mod_decomp_int[of B n])
unfolding mod
by (use assms(2,3) in ‹auto simp: ac_simps›)
qed
lemma verit_le_mono_div_int:
‹A div n + (if B mod n = 0 then 1 else 0) ≤ B div n›
if ‹A < B› ‹0 < n›
for A B n :: int
proof -
from ‹A < B› ‹0 < n› have ‹A div n ≤ B div n›
by (auto intro: zdiv_mono1)
show ?thesis
proof (cases ‹n dvd B›)
case False
with ‹A div n ≤ B div n› show ?thesis
by auto
next
case True
then obtain C where ‹B = n * C› ..
then have ‹B div n = C›
using ‹0 < n› by simp
from ‹0 < n› have ‹A mod n ≥ 0›
by simp
have ‹A div n < C›
proof (rule ccontr)
assume ‹¬ A div n < C›
then have ‹C ≤ A div n›
by simp
with ‹B div n = C› ‹A div n ≤ B div n›
have ‹A div n = C›
by simp
moreover from ‹A < B› have ‹n * (A div n) + A mod n < B›
by simp
ultimately have ‹n * C + A mod n < n * C›
using ‹B = n * C› by simp
moreover have ‹A mod n ≥ 0›
using ‹0 < n› by simp
ultimately show False
by simp
qed
with ‹n dvd B› ‹B div n = C› show ?thesis
by simp
qed
qed
lemma verit_less_mono_div_int2:
fixes A B :: int
assumes "A ≤ B" "0 < -n"
shows "(A div n) ≥ (B div n)"
using assms(1) assms(2) zdiv_mono1_neg by auto
lemmas [smt_arith_multiplication] =
verit_le_mono_div_int[THEN mult_left_mono, unfolded int_distrib]
zdiv_mono1[THEN mult_left_mono, unfolded int_distrib]
lemmas [smt_arith_multiplication] =
arg_cong[of _ _ ‹λa :: nat. a div n * p› for n p :: nat, THEN sym]
arg_cong[of _ _ ‹λa :: int. a div n * p› for n p :: int, THEN sym]
lemma [smt_arith_combine]:
"a < b ⟹ c < d ⟹ a + c + 2 ≤ b + d"
"a < b ⟹ c ≤ d ⟹ a + c + 1 ≤ b + d"
"a ≤ b ⟹ c < d ⟹ a + c + 1 ≤ b + d" for a b c :: int
by auto
lemma [smt_arith_combine]:
"a < b ⟹ c < d ⟹ a + c + 2 ≤ b + d"
"a < b ⟹ c ≤ d ⟹ a + c + 1 ≤ b + d"
"a ≤ b ⟹ c < d ⟹ a + c + 1 ≤ b + d" for a b c :: nat
by auto
lemmas [smt_arith_combine] =
add_strict_mono
add_less_le_mono
add_mono
add_le_less_mono
lemma [smt_arith_combine]:
‹m < n ⟹ c = d ⟹ m + c < n + d›
‹m ≤ n ⟹ c = d ⟹ m + c ≤ n + d›
‹c = d ⟹ m < n ⟹ m + c < n + d›
‹c = d ⟹ m ≤ n ⟹ m + c ≤ n + d›
for m :: ‹'a :: ordered_cancel_ab_semigroup_add›
by (auto intro: ordered_cancel_ab_semigroup_add_class.add_strict_right_mono
ordered_ab_semigroup_add_class.add_right_mono)
lemma verit_negate_coefficient:
‹a ≤ (b :: 'a :: {ordered_ab_group_add}) ⟹ -a ≥ -b›
‹a < b ⟹ -a > -b›
‹a = b ⟹ -a = -b›
by auto
end
lemma verit_ite_intro:
‹(if a then P (if a then a' else b') else Q) ⟷ (if a then P a' else Q)›
‹(if a then P' else Q' (if a then a' else b')) ⟷ (if a then P' else Q' b')›
‹A = f (if a then R else S) ⟷ (if a then A = f R else A = f S)›
by auto
lemma verit_ite_if_cong:
fixes x y :: bool
assumes "b=c"
and "c ≡ True ⟹ x = u"
and "c ≡ False ⟹ y = v"
shows "(if b then x else y) ≡ (if c then u else v)"
proof -
have H: "(if b then x else y) = (if c then u else v)"
using assms by (auto split: if_splits)
show "(if b then x else y) ≡ (if c then u else v)"
by (subst H) auto
qed
subsection ‹Setup›
ML_file ‹Tools/SMT/smt_util.ML›
ML_file ‹Tools/SMT/smt_failure.ML›
ML_file ‹Tools/SMT/smt_config.ML›
ML_file ‹Tools/SMT/smt_builtin.ML›
ML_file ‹Tools/SMT/smt_datatypes.ML›
ML_file ‹Tools/SMT/smt_normalize.ML›
ML_file ‹Tools/SMT/smt_translate.ML›
ML_file ‹Tools/SMT/smtlib.ML›
ML_file ‹Tools/SMT/smtlib_interface.ML›
ML_file ‹Tools/SMT/smtlib_proof.ML›
ML_file ‹Tools/SMT/smtlib_isar.ML›
ML_file ‹Tools/SMT/z3_proof.ML›
ML_file ‹Tools/SMT/z3_isar.ML›
ML_file ‹Tools/SMT/smt_solver.ML›
ML_file ‹Tools/SMT/cvc_interface.ML›
ML_file ‹Tools/SMT/lethe_proof.ML›
ML_file ‹Tools/SMT/lethe_isar.ML›
ML_file ‹Tools/SMT/lethe_proof_parse.ML›
ML_file ‹Tools/SMT/cvc_proof_parse.ML›
ML_file ‹Tools/SMT/conj_disj_perm.ML›
ML_file ‹Tools/SMT/smt_replay_methods.ML›
ML_file ‹Tools/SMT/smt_replay.ML›
ML_file ‹Tools/SMT/smt_replay_arith.ML›
ML_file ‹Tools/SMT/z3_interface.ML›
ML_file ‹Tools/SMT/z3_replay_rules.ML›
ML_file ‹Tools/SMT/z3_replay_methods.ML›
ML_file ‹Tools/SMT/z3_replay.ML›
ML_file ‹Tools/SMT/lethe_replay_methods.ML›
ML_file ‹Tools/SMT/cvc5_replay_methods.ML›
ML_file ‹Tools/SMT/verit_replay_methods.ML›
ML_file ‹Tools/SMT/verit_strategies.ML›
ML_file ‹Tools/SMT/verit_replay.ML›
ML_file ‹Tools/SMT/cvc5_replay.ML›
ML_file ‹Tools/SMT/smt_systems.ML›
subsection ‹Configuration›
text ‹
The current configuration can be printed by the command
‹smt_status›, which shows the values of most options.
›
subsection ‹General configuration options›
text ‹
The option ‹smt_solver› can be used to change the target SMT
solver. The possible values can be obtained from the ‹smt_status›
command.
›
declare [[smt_solver = z3]]
text ‹
Since SMT solvers are potentially nonterminating, there is a timeout
(given in seconds) to restrict their runtime.
›
declare [[smt_timeout = 0]]
text ‹
SMT solvers apply randomized heuristics. In case a problem is not
solvable by an SMT solver, changing the following option might help.
›
declare [[smt_random_seed = 1]]
text ‹
In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
solvers are fully trusted without additional checks. The following
option can cause the SMT solver to run in proof-producing mode, giving
a checkable certificate. This is currently implemented only for veriT and
Z3.
›
declare [[smt_oracle = false]]
text ‹
Each SMT solver provides several command-line options to tweak its
behaviour. They can be passed to the solver by setting the following
options.
›
declare [[cvc4_options = ""]]
declare [[cvc5_options = ""]]
declare [[cvc5_proof_options = "--proof-format-mode=alethe --proof-granularity=dsl-rewrite"]]
declare [[verit_options = ""]]
declare [[z3_options = ""]]
text ‹
The SMT method provides an inference mechanism to detect simple triggers
in quantified formulas, which might increase the number of problems
solvable by SMT solvers (note: triggers guide quantifier instantiations
in the SMT solver). To turn it on, set the following option.
›
declare [[smt_infer_triggers = false]]
text ‹
Enable the following option to use built-in support for datatypes,
codatatypes, and records in CVC4 and cvc5. Currently, this is implemented
only in oracle mode.
›
declare [[cvc_extensions = false]]
text ‹
Enable the following option to use built-in support for div/mod, datatypes,
and records in Z3. Currently, this is implemented only in oracle mode.
›
declare [[z3_extensions = false]]
subsection ‹Certificates›
text ‹
By setting the option ‹smt_certificates› to the name of a file,
all following applications of an SMT solver a cached in that file.
Any further application of the same SMT solver (using the very same
configuration) re-uses the cached certificate instead of invoking the
solver. An empty string disables caching certificates.
The filename should be given as an explicit path. It is good
practice to use the name of the current theory (with ending
‹.certs› instead of ‹.thy›) as the certificates file.
Certificate files should be used at most once in a certain theory context,
to avoid race conditions with other concurrent accesses.
›
declare [[smt_certificates = ""]]
text ‹
The option ‹smt_read_only_certificates› controls whether only
stored certificates should be used or invocation of an SMT solver
is allowed. When set to ‹true›, no SMT solver will ever be
invoked and only the existing certificates found in the configured
cache are used; when set to ‹false› and there is no cached
certificate for some proposition, then the configured SMT solver is
invoked.
›
declare [[smt_read_only_certificates = false]]
subsection ‹Tracing›
text ‹
The SMT method, when applied, traces important information. To
make it entirely silent, set the following option to ‹false›.
›
declare [[smt_verbose = true]]
text ‹
For tracing the generated problem file given to the SMT solver as
well as the returned result of the solver, the option
‹smt_trace› should be set to ‹true›.
›
declare [[smt_trace = false]]
subsection ‹Schematic rules for Z3 proof reconstruction›
text ‹
Several prof rules of Z3 are not very well documented. There are two
lemma groups which can turn failing Z3 proof reconstruction attempts
into succeeding ones: the facts in ‹z3_rule› are tried prior to
any implemented reconstruction procedure for all uncertain Z3 proof
rules; the facts in ‹z3_simp› are only fed to invocations of
the simplifier when reconstructing theory-specific proof steps.
›
lemmas [z3_rule] =
refl eq_commute conj_commute disj_commute simp_thms nnf_simps
ring_distribs field_simps times_divide_eq_right times_divide_eq_left
if_True if_False not_not
NO_MATCH_def
lemma [z3_rule]:
"(P ∧ Q) = (¬ (¬ P ∨ ¬ Q))"
"(P ∧ Q) = (¬ (¬ Q ∨ ¬ P))"
"(¬ P ∧ Q) = (¬ (P ∨ ¬ Q))"
"(¬ P ∧ Q) = (¬ (¬ Q ∨ P))"
"(P ∧ ¬ Q) = (¬ (¬ P ∨ Q))"
"(P ∧ ¬ Q) = (¬ (Q ∨ ¬ P))"
"(¬ P ∧ ¬ Q) = (¬ (P ∨ Q))"
"(¬ P ∧ ¬ Q) = (¬ (Q ∨ P))"
by auto
lemma [z3_rule]:
"(P ⟶ Q) = (Q ∨ ¬ P)"
"(¬ P ⟶ Q) = (P ∨ Q)"
"(¬ P ⟶ Q) = (Q ∨ P)"
"(True ⟶ P) = P"
"(P ⟶ True) = True"
"(False ⟶ P) = True"
"(P ⟶ P) = True"
"(¬ (A ⟷ ¬ B)) ⟷ (A ⟷ B)"
by auto
lemma [z3_rule]:
"((P = Q) ⟶ R) = (R ∨ (Q = (¬ P)))"
by auto
lemma [z3_rule]:
"(¬ True) = False"
"(¬ False) = True"
"(x = x) = True"
"(P = True) = P"
"(True = P) = P"
"(P = False) = (¬ P)"
"(False = P) = (¬ P)"
"((¬ P) = P) = False"
"(P = (¬ P)) = False"
"((¬ P) = (¬ Q)) = (P = Q)"
"¬ (P = (¬ Q)) = (P = Q)"
"¬ ((¬ P) = Q) = (P = Q)"
"(P ≠ Q) = (Q = (¬ P))"
"(P = Q) = ((¬ P ∨ Q) ∧ (P ∨ ¬ Q))"
"(P ≠ Q) = ((¬ P ∨ ¬ Q) ∧ (P ∨ Q))"
by auto
lemma [z3_rule]:
"(if P then P else ¬ P) = True"
"(if ¬ P then ¬ P else P) = True"
"(if P then True else False) = P"
"(if P then False else True) = (¬ P)"
"(if P then Q else True) = ((¬ P) ∨ Q)"
"(if P then Q else True) = (Q ∨ (¬ P))"
"(if P then Q else ¬ Q) = (P = Q)"
"(if P then Q else ¬ Q) = (Q = P)"
"(if P then ¬ Q else Q) = (P = (¬ Q))"
"(if P then ¬ Q else Q) = ((¬ Q) = P)"
"(if ¬ P then x else y) = (if P then y else x)"
"(if P then (if Q then x else y) else x) = (if P ∧ (¬ Q) then y else x)"
"(if P then (if Q then x else y) else x) = (if (¬ Q) ∧ P then y else x)"
"(if P then (if Q then x else y) else y) = (if P ∧ Q then x else y)"
"(if P then (if Q then x else y) else y) = (if Q ∧ P then x else y)"
"(if P then x else if P then y else z) = (if P then x else z)"
"(if P then x else if Q then x else y) = (if P ∨ Q then x else y)"
"(if P then x else if Q then x else y) = (if Q ∨ P then x else y)"
"(if P then x = y else x = z) = (x = (if P then y else z))"
"(if P then x = y else y = z) = (y = (if P then x else z))"
"(if P then x = y else z = y) = (y = (if P then x else z))"
by auto
lemma [z3_rule]:
"0 + (x::int) = x"
"x + 0 = x"
"x + x = 2 * x"
"0 * x = 0"
"1 * x = x"
"x + y = y + x"
by auto
lemma [z3_rule]:
"P = Q ∨ P ∨ Q"
"P = Q ∨ ¬ P ∨ ¬ Q"
"(¬ P) = Q ∨ ¬ P ∨ Q"
"(¬ P) = Q ∨ P ∨ ¬ Q"
"P = (¬ Q) ∨ ¬ P ∨ Q"
"P = (¬ Q) ∨ P ∨ ¬ Q"
"P ≠ Q ∨ P ∨ ¬ Q"
"P ≠ Q ∨ ¬ P ∨ Q"
"P ≠ (¬ Q) ∨ P ∨ Q"
"(¬ P) ≠ Q ∨ P ∨ Q"
"P ∨ Q ∨ P ≠ (¬ Q)"
"P ∨ Q ∨ (¬ P) ≠ Q"
"P ∨ ¬ Q ∨ P ≠ Q"
"¬ P ∨ Q ∨ P ≠ Q"
"P ∨ y = (if P then x else y)"
"P ∨ (if P then x else y) = y"
"¬ P ∨ x = (if P then x else y)"
"¬ P ∨ (if P then x else y) = x"
"P ∨ R ∨ ¬ (if P then Q else R)"
"¬ P ∨ Q ∨ ¬ (if P then Q else R)"
"¬ (if P then Q else R) ∨ ¬ P ∨ Q"
"¬ (if P then Q else R) ∨ P ∨ R"
"(if P then Q else R) ∨ ¬ P ∨ ¬ Q"
"(if P then Q else R) ∨ P ∨ ¬ R"
"(if P then ¬ Q else R) ∨ ¬ P ∨ Q"
"(if P then Q else ¬ R) ∨ P ∨ R"
by auto
hide_type (open) symb_list pattern
hide_const (open) Symb_Nil Symb_Cons trigger pat nopat fun_app z3div z3mod
end