Theory HOL.Groups
section ‹Groups, also combined with orderings›
theory Groups
imports Orderings
begin
subsection ‹Dynamic facts›
named_theorems ac_simps "associativity and commutativity simplification rules"
and algebra_simps "algebra simplification rules for rings"
and algebra_split_simps "algebra simplification rules for rings, with potential goal splitting"
and field_simps "algebra simplification rules for fields"
and field_split_simps "algebra simplification rules for fields, with potential goal splitting"
text ‹
The rewrites accumulated in ‹algebra_simps› deal with the classical
algebraic structures of groups, rings and family. They simplify terms by
multiplying everything out (in case of a ring) and bringing sums and
products into a canonical form (by ordered rewriting). As a result it
decides group and ring equalities but also helps with inequalities.
Of course it also works for fields, but it knows nothing about
multiplicative inverses or division. This is catered for by ‹field_simps›.
Facts in ‹field_simps› multiply with denominators in (in)equations if they
can be proved to be non-zero (for equations) or positive/negative (for
inequalities). Can be too aggressive and is therefore separate from the more
benign ‹algebra_simps›.
Collections ‹algebra_split_simps› and ‹field_split_simps›
correspond to ‹algebra_simps› and ‹field_simps›
but contain more aggresive rules that may lead to goal splitting.
›
subsection ‹Abstract structures›
text ‹
These locales provide basic structures for interpretation into bigger
structures; extensions require careful thinking, otherwise undesired effects
may occur due to interpretation.
›
locale semigroup =
fixes f :: "'a ⇒ 'a ⇒ 'a" (infixl "❙*" 70)
assumes assoc [ac_simps]: "a ❙* b ❙* c = a ❙* (b ❙* c)"
locale abel_semigroup = semigroup +
assumes commute [ac_simps]: "a ❙* b = b ❙* a"
begin
lemma left_commute [ac_simps]: "b ❙* (a ❙* c) = a ❙* (b ❙* c)"
proof -
have "(b ❙* a) ❙* c = (a ❙* b) ❙* c"
by (simp only: commute)
then show ?thesis
by (simp only: assoc)
qed
end
locale monoid = semigroup +
fixes z :: 'a ("❙1")
assumes left_neutral [simp]: "❙1 ❙* a = a"
assumes right_neutral [simp]: "a ❙* ❙1 = a"
locale comm_monoid = abel_semigroup +
fixes z :: 'a ("❙1")
assumes comm_neutral: "a ❙* ❙1 = a"
begin
sublocale monoid
by standard (simp_all add: commute comm_neutral)
end
locale group = semigroup +
fixes z :: 'a ("❙1")
fixes inverse :: "'a ⇒ 'a"
assumes group_left_neutral: "❙1 ❙* a = a"
assumes left_inverse [simp]: "inverse a ❙* a = ❙1"
begin
lemma left_cancel: "a ❙* b = a ❙* c ⟷ b = c"
proof
assume "a ❙* b = a ❙* c"
then have "inverse a ❙* (a ❙* b) = inverse a ❙* (a ❙* c)" by simp
then have "(inverse a ❙* a) ❙* b = (inverse a ❙* a) ❙* c"
by (simp only: assoc)
then show "b = c" by (simp add: group_left_neutral)
qed simp
sublocale monoid
proof
fix a
have "inverse a ❙* a = ❙1" by simp
then have "inverse a ❙* (a ❙* ❙1) = inverse a ❙* a"
by (simp add: group_left_neutral assoc [symmetric])
with left_cancel show "a ❙* ❙1 = a"
by (simp only: left_cancel)
qed (fact group_left_neutral)
lemma inverse_unique:
assumes "a ❙* b = ❙1"
shows "inverse a = b"
proof -
from assms have "inverse a ❙* (a ❙* b) = inverse a"
by simp
then show ?thesis
by (simp add: assoc [symmetric])
qed
lemma inverse_neutral [simp]: "inverse ❙1 = ❙1"
by (rule inverse_unique) simp
lemma inverse_inverse [simp]: "inverse (inverse a) = a"
by (rule inverse_unique) simp
lemma right_inverse [simp]: "a ❙* inverse a = ❙1"
proof -
have "a ❙* inverse a = inverse (inverse a) ❙* inverse a"
by simp
also have "… = ❙1"
by (rule left_inverse)
then show ?thesis by simp
qed
lemma inverse_distrib_swap: "inverse (a ❙* b) = inverse b ❙* inverse a"
proof (rule inverse_unique)
have "a ❙* b ❙* (inverse b ❙* inverse a) =
a ❙* (b ❙* inverse b) ❙* inverse a"
by (simp only: assoc)
also have "… = ❙1"
by simp
finally show "a ❙* b ❙* (inverse b ❙* inverse a) = ❙1" .
qed
lemma right_cancel: "b ❙* a = c ❙* a ⟷ b = c"
proof
assume "b ❙* a = c ❙* a"
then have "b ❙* a ❙* inverse a= c ❙* a ❙* inverse a"
by simp
then show "b = c"
by (simp add: assoc)
qed simp
end
subsection ‹Generic operations›
class zero =
fixes zero :: 'a ("0")
class one =
fixes one :: 'a ("1")
hide_const (open) zero one
lemma Let_0 [simp]: "Let 0 f = f 0"
unfolding Let_def ..
lemma Let_1 [simp]: "Let 1 f = f 1"
unfolding Let_def ..
setup ‹
Reorient_Proc.add
(fn Const(\<^const_name>‹Groups.zero›, _) => true
| Const(\<^const_name>‹Groups.one›, _) => true
| _ => false)
›
simproc_setup reorient_zero ("0 = x") = ‹K Reorient_Proc.proc›
simproc_setup reorient_one ("1 = x") = ‹K Reorient_Proc.proc›
typed_print_translation ‹
let
fun tr' c = (c, fn ctxt => fn T => fn ts =>
if null ts andalso Printer.type_emphasis ctxt T then
Syntax.const \<^syntax_const>‹_constrain› $ Syntax.const c $
Syntax_Phases.term_of_typ ctxt T
else raise Match);
in map tr' [\<^const_syntax>‹Groups.one›, \<^const_syntax>‹Groups.zero›] end
›
class plus =
fixes plus :: "'a ⇒ 'a ⇒ 'a" (infixl "+" 65)
class minus =
fixes minus :: "'a ⇒ 'a ⇒ 'a" (infixl "-" 65)
class uminus =
fixes uminus :: "'a ⇒ 'a" ("- _" [81] 80)
class times =
fixes times :: "'a ⇒ 'a ⇒ 'a" (infixl "*" 70)
subsection ‹Semigroups and Monoids›
class semigroup_add = plus +
assumes add_assoc: "(a + b) + c = a + (b + c)"
begin
sublocale add: semigroup plus
by standard (fact add_assoc)
declare add.assoc [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
end
hide_fact add_assoc
class ab_semigroup_add = semigroup_add +
assumes add_commute: "a + b = b + a"
begin
sublocale add: abel_semigroup plus
by standard (fact add_commute)
declare add.commute [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
add.left_commute [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
lemmas add_ac = add.assoc add.commute add.left_commute
end
hide_fact add_commute
lemmas add_ac = add.assoc add.commute add.left_commute
class semigroup_mult = times +
assumes mult_assoc: "(a * b) * c = a * (b * c)"
begin
sublocale mult: semigroup times
by standard (fact mult_assoc)
declare mult.assoc [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
end
hide_fact mult_assoc
class ab_semigroup_mult = semigroup_mult +
assumes mult_commute: "a * b = b * a"
begin
sublocale mult: abel_semigroup times
by standard (fact mult_commute)
declare mult.commute [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
mult.left_commute [algebra_simps, algebra_split_simps, field_simps, field_split_simps]
lemmas mult_ac = mult.assoc mult.commute mult.left_commute
end
hide_fact mult_commute
lemmas mult_ac = mult.assoc mult.commute mult.left_commute
class monoid_add = zero + semigroup_add +
assumes add_0_left: "0 + a = a"
and add_0_right: "a + 0 = a"
begin
sublocale add: monoid plus 0
by standard (fact add_0_left add_0_right)+
end
lemma zero_reorient: "0 = x ⟷ x = 0"
by (fact eq_commute)
class comm_monoid_add = zero + ab_semigroup_add +
assumes add_0: "0 + a = a"
begin
subclass monoid_add
by standard (simp_all add: add_0 add.commute [of _ 0])
sublocale add: comm_monoid plus 0
by standard (simp add: ac_simps)
end
class monoid_mult = one + semigroup_mult +
assumes mult_1_left: "1 * a = a"
and mult_1_right: "a * 1 = a"
begin
sublocale mult: monoid times 1
by standard (fact mult_1_left mult_1_right)+
end
lemma one_reorient: "1 = x ⟷ x = 1"
by (fact eq_commute)
class comm_monoid_mult = one + ab_semigroup_mult +
assumes mult_1: "1 * a = a"
begin
subclass monoid_mult
by standard (simp_all add: mult_1 mult.commute [of _ 1])
sublocale mult: comm_monoid times 1
by standard (simp add: ac_simps)
end
class cancel_semigroup_add = semigroup_add +
assumes add_left_imp_eq: "a + b = a + c ⟹ b = c"
assumes add_right_imp_eq: "b + a = c + a ⟹ b = c"
begin
lemma add_left_cancel [simp]: "a + b = a + c ⟷ b = c"
by (blast dest: add_left_imp_eq)
lemma add_right_cancel [simp]: "b + a = c + a ⟷ b = c"
by (blast dest: add_right_imp_eq)
end
class cancel_ab_semigroup_add = ab_semigroup_add + minus +
assumes add_diff_cancel_left' [simp]: "(a + b) - a = b"
assumes diff_diff_add [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a - b - c = a - (b + c)"
begin
lemma add_diff_cancel_right' [simp]: "(a + b) - b = a"
using add_diff_cancel_left' [of b a] by (simp add: ac_simps)
subclass cancel_semigroup_add
proof
fix a b c :: 'a
assume "a + b = a + c"
then have "a + b - a = a + c - a"
by simp
then show "b = c"
by simp
next
fix a b c :: 'a
assume "b + a = c + a"
then have "b + a - a = c + a - a"
by simp
then show "b = c"
by simp
qed
lemma add_diff_cancel_left [simp]: "(c + a) - (c + b) = a - b"
unfolding diff_diff_add [symmetric] by simp
lemma add_diff_cancel_right [simp]: "(a + c) - (b + c) = a - b"
using add_diff_cancel_left [symmetric] by (simp add: ac_simps)
lemma diff_right_commute: "a - c - b = a - b - c"
by (simp add: diff_diff_add add.commute)
end
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
begin
lemma diff_zero [simp]: "a - 0 = a"
using add_diff_cancel_right' [of a 0] by simp
lemma diff_cancel [simp]: "a - a = 0"
proof -
have "(a + 0) - (a + 0) = 0"
by (simp only: add_diff_cancel_left diff_zero)
then show ?thesis by simp
qed
lemma add_implies_diff:
assumes "c + b = a"
shows "c = a - b"
proof -
from assms have "(b + c) - (b + 0) = a - b"
by (simp add: add.commute)
then show "c = a - b" by simp
qed
lemma add_cancel_right_right [simp]: "a = a + b ⟷ b = 0"
(is "?P ⟷ ?Q")
proof
assume ?Q
then show ?P by simp
next
assume ?P
then have "a - a = a + b - a" by simp
then show ?Q by simp
qed
lemma add_cancel_right_left [simp]: "a = b + a ⟷ b = 0"
using add_cancel_right_right [of a b] by (simp add: ac_simps)
lemma add_cancel_left_right [simp]: "a + b = a ⟷ b = 0"
by (auto dest: sym)
lemma add_cancel_left_left [simp]: "b + a = a ⟷ b = 0"
by (auto dest: sym)
end
class comm_monoid_diff = cancel_comm_monoid_add +
assumes zero_diff [simp]: "0 - a = 0"
begin
lemma diff_add_zero [simp]: "a - (a + b) = 0"
proof -
have "a - (a + b) = (a + 0) - (a + b)"
by simp
also have "… = 0"
by (simp only: add_diff_cancel_left zero_diff)
finally show ?thesis .
qed
end
subsection ‹Groups›
class group_add = minus + uminus + monoid_add +
assumes left_minus: "- a + a = 0"
assumes add_uminus_conv_diff [simp]: "a + (- b) = a - b"
begin
lemma diff_conv_add_uminus: "a - b = a + (- b)"
by simp
sublocale add: group plus 0 uminus
by standard (simp_all add: left_minus)
lemma minus_unique: "a + b = 0 ⟹ - a = b"
by (fact add.inverse_unique)
lemma minus_zero: "- 0 = 0"
by (fact add.inverse_neutral)
lemma minus_minus: "- (- a) = a"
by (fact add.inverse_inverse)
lemma right_minus: "a + - a = 0"
by (fact add.right_inverse)
lemma diff_self [simp]: "a - a = 0"
using right_minus [of a] by simp
subclass cancel_semigroup_add
by standard (simp_all add: add.left_cancel add.right_cancel)
lemma minus_add_cancel [simp]: "- a + (a + b) = b"
by (simp add: add.assoc [symmetric])
lemma add_minus_cancel [simp]: "a + (- a + b) = b"
by (simp add: add.assoc [symmetric])
lemma diff_add_cancel [simp]: "a - b + b = a"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma add_diff_cancel [simp]: "a + b - b = a"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma minus_add: "- (a + b) = - b + - a"
by (fact add.inverse_distrib_swap)
lemma right_minus_eq [simp]: "a - b = 0 ⟷ a = b"
proof
assume "a - b = 0"
have "a = (a - b) + b" by (simp add: add.assoc)
also have "… = b" using ‹a - b = 0› by simp
finally show "a = b" .
next
assume "a = b"
then show "a - b = 0" by simp
qed
lemma eq_iff_diff_eq_0: "a = b ⟷ a - b = 0"
by (fact right_minus_eq [symmetric])
lemma diff_0 [simp]: "0 - a = - a"
by (simp only: diff_conv_add_uminus add_0_left)
lemma diff_0_right [simp]: "a - 0 = a"
by (simp only: diff_conv_add_uminus minus_zero add_0_right)
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
by (simp only: diff_conv_add_uminus minus_minus)
lemma neg_equal_iff_equal [simp]: "- a = - b ⟷ a = b"
proof
assume "- a = - b"
then have "- (- a) = - (- b)" by simp
then show "a = b" by simp
next
assume "a = b"
then show "- a = - b" by simp
qed
lemma neg_equal_0_iff_equal [simp]: "- a = 0 ⟷ a = 0"
by (subst neg_equal_iff_equal [symmetric]) simp
lemma neg_0_equal_iff_equal [simp]: "0 = - a ⟷ 0 = a"
by (subst neg_equal_iff_equal [symmetric]) simp
text ‹The next two equations can make the simplifier loop!›
lemma equation_minus_iff: "a = - b ⟷ b = - a"
proof -
have "- (- a) = - b ⟷ - a = b"
by (rule neg_equal_iff_equal)
then show ?thesis
by (simp add: eq_commute)
qed
lemma minus_equation_iff: "- a = b ⟷ - b = a"
proof -
have "- a = - (- b) ⟷ a = -b"
by (rule neg_equal_iff_equal)
then show ?thesis
by (simp add: eq_commute)
qed
lemma eq_neg_iff_add_eq_0: "a = - b ⟷ a + b = 0"
proof
assume "a = - b"
then show "a + b = 0" by simp
next
assume "a + b = 0"
moreover have "a + (b + - b) = (a + b) + - b"
by (simp only: add.assoc)
ultimately show "a = - b"
by simp
qed
lemma add_eq_0_iff2: "a + b = 0 ⟷ a = - b"
by (fact eq_neg_iff_add_eq_0 [symmetric])
lemma neg_eq_iff_add_eq_0: "- a = b ⟷ a + b = 0"
by (auto simp add: add_eq_0_iff2)
lemma add_eq_0_iff: "a + b = 0 ⟷ b = - a"
by (auto simp add: neg_eq_iff_add_eq_0 [symmetric])
lemma minus_diff_eq [simp]: "- (a - b) = b - a"
by (simp only: neg_eq_iff_add_eq_0 diff_conv_add_uminus add.assoc minus_add_cancel) simp
lemma add_diff_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a + (b - c) = (a + b) - c"
by (simp only: diff_conv_add_uminus add.assoc)
lemma diff_add_eq_diff_diff_swap: "a - (b + c) = a - c - b"
by (simp only: diff_conv_add_uminus add.assoc minus_add)
lemma diff_eq_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a - b = c ⟷ a = c + b"
by auto
lemma eq_diff_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a = c - b ⟷ a + b = c"
by auto
lemma diff_diff_eq2 [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a - (b - c) = (a + c) - b"
by (simp only: diff_conv_add_uminus add.assoc) simp
lemma diff_eq_diff_eq: "a - b = c - d ⟹ a = b ⟷ c = d"
by (simp only: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d])
end
class ab_group_add = minus + uminus + comm_monoid_add +
assumes ab_left_minus: "- a + a = 0"
assumes ab_diff_conv_add_uminus: "a - b = a + (- b)"
begin
subclass group_add
by standard (simp_all add: ab_left_minus ab_diff_conv_add_uminus)
subclass cancel_comm_monoid_add
proof
fix a b c :: 'a
have "b + a - a = b"
by simp
then show "a + b - a = b"
by (simp add: ac_simps)
show "a - b - c = a - (b + c)"
by (simp add: algebra_simps)
qed
lemma uminus_add_conv_diff [simp]: "- a + b = b - a"
by (simp add: add.commute)
lemma minus_add_distrib [simp]: "- (a + b) = - a + - b"
by (simp add: algebra_simps)
lemma diff_add_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"(a - b) + c = (a + c) - b"
by (simp add: algebra_simps)
lemma minus_diff_commute:
"- b - a = - a - b"
by (simp only: diff_conv_add_uminus add.commute)
end
subsection ‹(Partially) Ordered Groups›
text ‹
The theory of partially ordered groups is taken from the books:
▪ ∗‹Lattice Theory› by Garret Birkhoff, American Mathematical Society, 1979
▪ ∗‹Partially Ordered Algebraic Systems›, Pergamon Press, 1963
Most of the used notions can also be looked up in
▪ 🌐‹http://www.mathworld.com› by Eric Weisstein et. al.
▪ ∗‹Algebra I› by van der Waerden, Springer
›
class ordered_ab_semigroup_add = order + ab_semigroup_add +
assumes add_left_mono: "a ≤ b ⟹ c + a ≤ c + b"
begin
lemma add_right_mono: "a ≤ b ⟹ a + c ≤ b + c"
by (simp add: add.commute [of _ c] add_left_mono)
text ‹non-strict, in both arguments›
lemma add_mono: "a ≤ b ⟹ c ≤ d ⟹ a + c ≤ b + d"
by (simp add: add.commute add_left_mono add_right_mono [THEN order_trans])
end
text ‹Strict monotonicity in both arguments›
class strict_ordered_ab_semigroup_add = ordered_ab_semigroup_add +
assumes add_strict_mono: "a < b ⟹ c < d ⟹ a + c < b + d"
class ordered_cancel_ab_semigroup_add =
ordered_ab_semigroup_add + cancel_ab_semigroup_add
begin
lemma add_strict_left_mono: "a < b ⟹ c + a < c + b"
by (auto simp add: less_le add_left_mono)
lemma add_strict_right_mono: "a < b ⟹ a + c < b + c"
by (simp add: add.commute [of _ c] add_strict_left_mono)
subclass strict_ordered_ab_semigroup_add
proof
show "⋀a b c d. ⟦a < b; c < d⟧ ⟹ a + c < b + d"
by (iprover intro: add_strict_left_mono add_strict_right_mono less_trans)
qed
lemma add_less_le_mono: "a < b ⟹ c ≤ d ⟹ a + c < b + d"
by (iprover intro: add_left_mono add_strict_right_mono less_le_trans)
lemma add_le_less_mono: "a ≤ b ⟹ c < d ⟹ a + c < b + d"
by (iprover intro: add_strict_left_mono add_right_mono less_le_trans)
end
class ordered_ab_semigroup_add_imp_le = ordered_cancel_ab_semigroup_add +
assumes add_le_imp_le_left: "c + a ≤ c + b ⟹ a ≤ b"
begin
lemma add_less_imp_less_left:
assumes less: "c + a < c + b"
shows "a < b"
proof -
from less have le: "c + a ≤ c + b"
by (simp add: order_le_less)
have "a ≤ b"
using add_le_imp_le_left [OF le] .
moreover have "a ≠ b"
proof (rule ccontr)
assume "¬ ?thesis"
then have "a = b" by simp
then have "c + a = c + b" by simp
with less show "False" by simp
qed
ultimately show "a < b"
by (simp add: order_le_less)
qed
lemma add_less_imp_less_right: "a + c < b + c ⟹ a < b"
by (rule add_less_imp_less_left [of c]) (simp add: add.commute)
lemma add_less_cancel_left [simp]: "c + a < c + b ⟷ a < b"
by (blast intro: add_less_imp_less_left add_strict_left_mono)
lemma add_less_cancel_right [simp]: "a + c < b + c ⟷ a < b"
by (blast intro: add_less_imp_less_right add_strict_right_mono)
lemma add_le_cancel_left [simp]: "c + a ≤ c + b ⟷ a ≤ b"
by (auto simp: dest: add_le_imp_le_left add_left_mono)
lemma add_le_cancel_right [simp]: "a + c ≤ b + c ⟷ a ≤ b"
by (simp add: add.commute [of a c] add.commute [of b c])
lemma add_le_imp_le_right: "a + c ≤ b + c ⟹ a ≤ b"
by simp
lemma max_add_distrib_left: "max x y + z = max (x + z) (y + z)"
unfolding max_def by auto
lemma min_add_distrib_left: "min x y + z = min (x + z) (y + z)"
unfolding min_def by auto
lemma max_add_distrib_right: "x + max y z = max (x + y) (x + z)"
unfolding max_def by auto
lemma min_add_distrib_right: "x + min y z = min (x + y) (x + z)"
unfolding min_def by auto
end
subsection ‹Support for reasoning about signs›
class ordered_comm_monoid_add = comm_monoid_add + ordered_ab_semigroup_add
begin
lemma add_nonneg_nonneg [simp]: "0 ≤ a ⟹ 0 ≤ b ⟹ 0 ≤ a + b"
using add_mono[of 0 a 0 b] by simp
lemma add_nonpos_nonpos: "a ≤ 0 ⟹ b ≤ 0 ⟹ a + b ≤ 0"
using add_mono[of a 0 b 0] by simp
lemma add_nonneg_eq_0_iff: "0 ≤ x ⟹ 0 ≤ y ⟹ x + y = 0 ⟷ x = 0 ∧ y = 0"
using add_left_mono[of 0 y x] add_right_mono[of 0 x y] by auto
lemma add_nonpos_eq_0_iff: "x ≤ 0 ⟹ y ≤ 0 ⟹ x + y = 0 ⟷ x = 0 ∧ y = 0"
using add_left_mono[of y 0 x] add_right_mono[of x 0 y] by auto
lemma add_increasing: "0 ≤ a ⟹ b ≤ c ⟹ b ≤ a + c"
using add_mono [of 0 a b c] by simp
lemma add_increasing2: "0 ≤ c ⟹ b ≤ a ⟹ b ≤ a + c"
by (simp add: add_increasing add.commute [of a])
lemma add_decreasing: "a ≤ 0 ⟹ c ≤ b ⟹ a + c ≤ b"
using add_mono [of a 0 c b] by simp
lemma add_decreasing2: "c ≤ 0 ⟹ a ≤ b ⟹ a + c ≤ b"
using add_mono[of a b c 0] by simp
lemma add_pos_nonneg: "0 < a ⟹ 0 ≤ b ⟹ 0 < a + b"
using less_le_trans[of 0 a "a + b"] by (simp add: add_increasing2)
lemma add_pos_pos: "0 < a ⟹ 0 < b ⟹ 0 < a + b"
by (intro add_pos_nonneg less_imp_le)
lemma add_nonneg_pos: "0 ≤ a ⟹ 0 < b ⟹ 0 < a + b"
using add_pos_nonneg[of b a] by (simp add: add_commute)
lemma add_neg_nonpos: "a < 0 ⟹ b ≤ 0 ⟹ a + b < 0"
using le_less_trans[of "a + b" a 0] by (simp add: add_decreasing2)
lemma add_neg_neg: "a < 0 ⟹ b < 0 ⟹ a + b < 0"
by (intro add_neg_nonpos less_imp_le)
lemma add_nonpos_neg: "a ≤ 0 ⟹ b < 0 ⟹ a + b < 0"
using add_neg_nonpos[of b a] by (simp add: add_commute)
lemmas add_sign_intros =
add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
end
class strict_ordered_comm_monoid_add = comm_monoid_add + strict_ordered_ab_semigroup_add
begin
lemma pos_add_strict: "0 < a ⟹ b < c ⟹ b < a + c"
using add_strict_mono [of 0 a b c] by simp
end
class ordered_cancel_comm_monoid_add = ordered_comm_monoid_add + cancel_ab_semigroup_add
begin
subclass ordered_cancel_ab_semigroup_add ..
subclass strict_ordered_comm_monoid_add ..
lemma add_strict_increasing: "0 < a ⟹ b ≤ c ⟹ b < a + c"
using add_less_le_mono [of 0 a b c] by simp
lemma add_strict_increasing2: "0 ≤ a ⟹ b < c ⟹ b < a + c"
using add_le_less_mono [of 0 a b c] by simp
end
class ordered_ab_semigroup_monoid_add_imp_le = monoid_add + ordered_ab_semigroup_add_imp_le
begin
lemma add_less_same_cancel1 [simp]: "b + a < b ⟷ a < 0"
using add_less_cancel_left [of _ _ 0] by simp
lemma add_less_same_cancel2 [simp]: "a + b < b ⟷ a < 0"
using add_less_cancel_right [of _ _ 0] by simp
lemma less_add_same_cancel1 [simp]: "a < a + b ⟷ 0 < b"
using add_less_cancel_left [of _ 0] by simp
lemma less_add_same_cancel2 [simp]: "a < b + a ⟷ 0 < b"
using add_less_cancel_right [of 0] by simp
lemma add_le_same_cancel1 [simp]: "b + a ≤ b ⟷ a ≤ 0"
using add_le_cancel_left [of _ _ 0] by simp
lemma add_le_same_cancel2 [simp]: "a + b ≤ b ⟷ a ≤ 0"
using add_le_cancel_right [of _ _ 0] by simp
lemma le_add_same_cancel1 [simp]: "a ≤ a + b ⟷ 0 ≤ b"
using add_le_cancel_left [of _ 0] by simp
lemma le_add_same_cancel2 [simp]: "a ≤ b + a ⟷ 0 ≤ b"
using add_le_cancel_right [of 0] by simp
subclass cancel_comm_monoid_add
by standard auto
subclass ordered_cancel_comm_monoid_add
by standard
end
class ordered_ab_group_add = ab_group_add + ordered_ab_semigroup_add
begin
subclass ordered_cancel_ab_semigroup_add ..
subclass ordered_ab_semigroup_monoid_add_imp_le
proof
fix a b c :: 'a
assume "c + a ≤ c + b"
then have "(-c) + (c + a) ≤ (-c) + (c + b)"
by (rule add_left_mono)
then have "((-c) + c) + a ≤ ((-c) + c) + b"
by (simp only: add.assoc)
then show "a ≤ b" by simp
qed
lemma max_diff_distrib_left: "max x y - z = max (x - z) (y - z)"
using max_add_distrib_left [of x y "- z"] by simp
lemma min_diff_distrib_left: "min x y - z = min (x - z) (y - z)"
using min_add_distrib_left [of x y "- z"] by simp
lemma le_imp_neg_le:
assumes "a ≤ b"
shows "- b ≤ - a"
proof -
from assms have "- a + a ≤ - a + b"
by (rule add_left_mono)
then have "0 ≤ - a + b"
by simp
then have "0 + (- b) ≤ (- a + b) + (- b)"
by (rule add_right_mono)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma neg_le_iff_le [simp]: "- b ≤ - a ⟷ a ≤ b"
proof
assume "- b ≤ - a"
then have "- (- a) ≤ - (- b)"
by (rule le_imp_neg_le)
then show "a ≤ b"
by simp
next
assume "a ≤ b"
then show "- b ≤ - a"
by (rule le_imp_neg_le)
qed
lemma neg_le_0_iff_le [simp]: "- a ≤ 0 ⟷ 0 ≤ a"
by (subst neg_le_iff_le [symmetric]) simp
lemma neg_0_le_iff_le [simp]: "0 ≤ - a ⟷ a ≤ 0"
by (subst neg_le_iff_le [symmetric]) simp
lemma neg_less_iff_less [simp]: "- b < - a ⟷ a < b"
by (auto simp add: less_le)
lemma neg_less_0_iff_less [simp]: "- a < 0 ⟷ 0 < a"
by (subst neg_less_iff_less [symmetric]) simp
lemma neg_0_less_iff_less [simp]: "0 < - a ⟷ a < 0"
by (subst neg_less_iff_less [symmetric]) simp
text ‹The next several equations can make the simplifier loop!›
lemma less_minus_iff: "a < - b ⟷ b < - a"
proof -
have "- (- a) < - b ⟷ b < - a"
by (rule neg_less_iff_less)
then show ?thesis by simp
qed
lemma minus_less_iff: "- a < b ⟷ - b < a"
proof -
have "- a < - (- b) ⟷ - b < a"
by (rule neg_less_iff_less)
then show ?thesis by simp
qed
lemma le_minus_iff: "a ≤ - b ⟷ b ≤ - a"
by (auto simp: order.order_iff_strict less_minus_iff)
lemma minus_le_iff: "- a ≤ b ⟷ - b ≤ a"
by (auto simp add: le_less minus_less_iff)
lemma diff_less_0_iff_less [simp]: "a - b < 0 ⟷ a < b"
proof -
have "a - b < 0 ⟷ a + (- b) < b + (- b)"
by simp
also have "… ⟷ a < b"
by (simp only: add_less_cancel_right)
finally show ?thesis .
qed
lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric]
lemma diff_less_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a - b < c ⟷ a < c + b"
proof (subst less_iff_diff_less_0 [of a])
show "(a - b < c) = (a - (c + b) < 0)"
by (simp add: algebra_simps less_iff_diff_less_0 [of _ c])
qed
lemma less_diff_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a < c - b ⟷ a + b < c"
proof (subst less_iff_diff_less_0 [of "a + b"])
show "(a < c - b) = (a + b - c < 0)"
by (simp add: algebra_simps less_iff_diff_less_0 [of a])
qed
lemma diff_gt_0_iff_gt [simp]: "a - b > 0 ⟷ a > b"
by (simp add: less_diff_eq)
lemma diff_le_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a - b ≤ c ⟷ a ≤ c + b"
by (auto simp add: le_less diff_less_eq )
lemma le_diff_eq [algebra_simps, algebra_split_simps, field_simps, field_split_simps]:
"a ≤ c - b ⟷ a + b ≤ c"
by (auto simp add: le_less less_diff_eq)
lemma diff_le_0_iff_le [simp]: "a - b ≤ 0 ⟷ a ≤ b"
by (simp add: algebra_simps)
lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric]
lemma diff_ge_0_iff_ge [simp]: "a - b ≥ 0 ⟷ a ≥ b"
by (simp add: le_diff_eq)
lemma diff_eq_diff_less: "a - b = c - d ⟹ a < b ⟷ c < d"
by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d])
lemma diff_eq_diff_less_eq: "a - b = c - d ⟹ a ≤ b ⟷ c ≤ d"
by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d])
lemma diff_mono: "a ≤ b ⟹ d ≤ c ⟹ a - c ≤ b - d"
by (simp add: field_simps add_mono)
lemma diff_left_mono: "b ≤ a ⟹ c - a ≤ c - b"
by (simp add: field_simps)
lemma diff_right_mono: "a ≤ b ⟹ a - c ≤ b - c"
by (simp add: field_simps)
lemma diff_strict_mono: "a < b ⟹ d < c ⟹ a - c < b - d"
by (simp add: field_simps add_strict_mono)
lemma diff_strict_left_mono: "b < a ⟹ c - a < c - b"
by (simp add: field_simps)
lemma diff_strict_right_mono: "a < b ⟹ a - c < b - c"
by (simp add: field_simps)
end
locale group_cancel
begin
lemma add1: "(A::'a::comm_monoid_add) ≡ k + a ⟹ A + b ≡ k + (a + b)"
by (simp only: ac_simps)
lemma add2: "(B::'a::comm_monoid_add) ≡ k + b ⟹ a + B ≡ k + (a + b)"
by (simp only: ac_simps)
lemma sub1: "(A::'a::ab_group_add) ≡ k + a ⟹ A - b ≡ k + (a - b)"
by (simp only: add_diff_eq)
lemma sub2: "(B::'a::ab_group_add) ≡ k + b ⟹ a - B ≡ - k + (a - b)"
by (simp only: minus_add diff_conv_add_uminus ac_simps)
lemma neg1: "(A::'a::ab_group_add) ≡ k + a ⟹ - A ≡ - k + - a"
by (simp only: minus_add_distrib)
lemma rule0: "(a::'a::comm_monoid_add) ≡ a + 0"
by (simp only: add_0_right)
end
ML_file ‹Tools/group_cancel.ML›
simproc_setup group_cancel_add ("a + b::'a::ab_group_add") =
‹fn phi => fn ss => try Group_Cancel.cancel_add_conv›
simproc_setup group_cancel_diff ("a - b::'a::ab_group_add") =
‹fn phi => fn ss => try Group_Cancel.cancel_diff_conv›
simproc_setup group_cancel_eq ("a = (b::'a::ab_group_add)") =
‹fn phi => fn ss => try Group_Cancel.cancel_eq_conv›
simproc_setup group_cancel_le ("a ≤ (b::'a::ordered_ab_group_add)") =
‹fn phi => fn ss => try Group_Cancel.cancel_le_conv›
simproc_setup group_cancel_less ("a < (b::'a::ordered_ab_group_add)") =
‹fn phi => fn ss => try Group_Cancel.cancel_less_conv›
class linordered_ab_semigroup_add =
linorder + ordered_ab_semigroup_add
class linordered_cancel_ab_semigroup_add =
linorder + ordered_cancel_ab_semigroup_add
begin
subclass linordered_ab_semigroup_add ..
subclass ordered_ab_semigroup_add_imp_le
proof
fix a b c :: 'a
assume le1: "c + a ≤ c + b"
show "a ≤ b"
proof (rule ccontr)
assume *: "¬ ?thesis"
then have "b ≤ a" by (simp add: linorder_not_le)
then have "c + b ≤ c + a" by (rule add_left_mono)
then have "c + a = c + b"
using le1 by (iprover intro: order.antisym)
then have "a = b"
by simp
with * show False
by (simp add: linorder_not_le [symmetric])
qed
qed
end
class linordered_ab_group_add = linorder + ordered_ab_group_add
begin
subclass linordered_cancel_ab_semigroup_add ..
lemma equal_neg_zero [simp]: "a = - a ⟷ a = 0"
proof
assume "a = 0"
then show "a = - a" by simp
next
assume A: "a = - a"
show "a = 0"
proof (cases "0 ≤ a")
case True
with A have "0 ≤ - a" by auto
with le_minus_iff have "a ≤ 0" by simp
with True show ?thesis by (auto intro: order_trans)
next
case False
then have B: "a ≤ 0" by auto
with A have "- a ≤ 0" by auto
with B show ?thesis by (auto intro: order_trans)
qed
qed
lemma neg_equal_zero [simp]: "- a = a ⟷ a = 0"
by (auto dest: sym)
lemma neg_less_eq_nonneg [simp]: "- a ≤ a ⟷ 0 ≤ a"
proof
assume *: "- a ≤ a"
show "0 ≤ a"
proof (rule classical)
assume "¬ ?thesis"
then have "a < 0" by auto
with * have "- a < 0" by (rule le_less_trans)
then show ?thesis by auto
qed
next
assume *: "0 ≤ a"
then have "- a ≤ 0" by (simp add: minus_le_iff)
from this * show "- a ≤ a" by (rule order_trans)
qed
lemma neg_less_pos [simp]: "- a < a ⟷ 0 < a"
by (auto simp add: less_le)
lemma less_eq_neg_nonpos [simp]: "a ≤ - a ⟷ a ≤ 0"
using neg_less_eq_nonneg [of "- a"] by simp
lemma less_neg_neg [simp]: "a < - a ⟷ a < 0"
using neg_less_pos [of "- a"] by simp
lemma double_zero [simp]: "a + a = 0 ⟷ a = 0"
proof
assume "a + a = 0"
then have a: "- a = a" by (rule minus_unique)
then show "a = 0" by (simp only: neg_equal_zero)
next
assume "a = 0"
then show "a + a = 0" by simp
qed
lemma double_zero_sym [simp]: "0 = a + a ⟷ a = 0"
using double_zero [of a] by (simp only: eq_commute)
lemma zero_less_double_add_iff_zero_less_single_add [simp]: "0 < a + a ⟷ 0 < a"
proof
assume "0 < a + a"
then have "0 - a < a" by (simp only: diff_less_eq)
then have "- a < a" by simp
then show "0 < a" by simp
next
assume "0 < a"
with this have "0 + 0 < a + a"
by (rule add_strict_mono)
then show "0 < a + a" by simp
qed
lemma zero_le_double_add_iff_zero_le_single_add [simp]: "0 ≤ a + a ⟷ 0 ≤ a"
by (auto simp add: le_less)
lemma double_add_less_zero_iff_single_add_less_zero [simp]: "a + a < 0 ⟷ a < 0"
proof -
have "¬ a + a < 0 ⟷ ¬ a < 0"
by (simp add: not_less)
then show ?thesis by simp
qed
lemma double_add_le_zero_iff_single_add_le_zero [simp]: "a + a ≤ 0 ⟷ a ≤ 0"
proof -
have "¬ a + a ≤ 0 ⟷ ¬ a ≤ 0"
by (simp add: not_le)
then show ?thesis by simp
qed
lemma minus_max_eq_min: "- max x y = min (- x) (- y)"
by (auto simp add: max_def min_def)
lemma minus_min_eq_max: "- min x y = max (- x) (- y)"
by (auto simp add: max_def min_def)
end
class abs =
fixes abs :: "'a ⇒ 'a" ("¦_¦")
class sgn =
fixes sgn :: "'a ⇒ 'a"
class ordered_ab_group_add_abs = ordered_ab_group_add + abs +
assumes abs_ge_zero [simp]: "¦a¦ ≥ 0"
and abs_ge_self: "a ≤ ¦a¦"
and abs_leI: "a ≤ b ⟹ - a ≤ b ⟹ ¦a¦ ≤ b"
and abs_minus_cancel [simp]: "¦-a¦ = ¦a¦"
and abs_triangle_ineq: "¦a + b¦ ≤ ¦a¦ + ¦b¦"
begin
lemma abs_minus_le_zero: "- ¦a¦ ≤ 0"
unfolding neg_le_0_iff_le by simp
lemma abs_of_nonneg [simp]:
assumes nonneg: "0 ≤ a"
shows "¦a¦ = a"
proof (rule order.antisym)
show "a ≤ ¦a¦" by (rule abs_ge_self)
from nonneg le_imp_neg_le have "- a ≤ 0" by simp
from this nonneg have "- a ≤ a" by (rule order_trans)
then show "¦a¦ ≤ a" by (auto intro: abs_leI)
qed
lemma abs_idempotent [simp]: "¦¦a¦¦ = ¦a¦"
by (rule order.antisym) (auto intro!: abs_ge_self abs_leI order_trans [of "- ¦a¦" 0 "¦a¦"])
lemma abs_eq_0 [simp]: "¦a¦ = 0 ⟷ a = 0"
proof -
have "¦a¦ = 0 ⟹ a = 0"
proof (rule order.antisym)
assume zero: "¦a¦ = 0"
with abs_ge_self show "a ≤ 0" by auto
from zero have "¦-a¦ = 0" by simp
with abs_ge_self [of "- a"] have "- a ≤ 0" by auto
with neg_le_0_iff_le show "0 ≤ a" by auto
qed
then show ?thesis by auto
qed
lemma abs_zero [simp]: "¦0¦ = 0"
by simp
lemma abs_0_eq [simp]: "0 = ¦a¦ ⟷ a = 0"
proof -
have "0 = ¦a¦ ⟷ ¦a¦ = 0" by (simp only: eq_ac)
then show ?thesis by simp
qed
lemma abs_le_zero_iff [simp]: "¦a¦ ≤ 0 ⟷ a = 0"
proof
assume "¦a¦ ≤ 0"
then have "¦a¦ = 0" by (rule order.antisym) simp
then show "a = 0" by simp
next
assume "a = 0"
then show "¦a¦ ≤ 0" by simp
qed
lemma abs_le_self_iff [simp]: "¦a¦ ≤ a ⟷ 0 ≤ a"
proof -
have "0 ≤ ¦a¦"
using abs_ge_zero by blast
then have "¦a¦ ≤ a ⟹ 0 ≤ a"
using order.trans by blast
then show ?thesis
using abs_of_nonneg eq_refl by blast
qed
lemma zero_less_abs_iff [simp]: "0 < ¦a¦ ⟷ a ≠ 0"
by (simp add: less_le)
lemma abs_not_less_zero [simp]: "¬ ¦a¦ < 0"
proof -
have "x ≤ y ⟹ ¬ y < x" for x y by auto
then show ?thesis by simp
qed
lemma abs_ge_minus_self: "- a ≤ ¦a¦"
proof -
have "- a ≤ ¦-a¦" by (rule abs_ge_self)
then show ?thesis by simp
qed
lemma abs_minus_commute: "¦a - b¦ = ¦b - a¦"
proof -
have "¦a - b¦ = ¦- (a - b)¦"
by (simp only: abs_minus_cancel)
also have "… = ¦b - a¦" by simp
finally show ?thesis .
qed
lemma abs_of_pos: "0 < a ⟹ ¦a¦ = a"
by (rule abs_of_nonneg) (rule less_imp_le)
lemma abs_of_nonpos [simp]:
assumes "a ≤ 0"
shows "¦a¦ = - a"
proof -
let ?b = "- a"
have "- ?b ≤ 0 ⟹ ¦- ?b¦ = - (- ?b)"
unfolding abs_minus_cancel [of ?b]
unfolding neg_le_0_iff_le [of ?b]
unfolding minus_minus by (erule abs_of_nonneg)
then show ?thesis using assms by auto
qed
lemma abs_of_neg: "a < 0 ⟹ ¦a¦ = - a"
by (rule abs_of_nonpos) (rule less_imp_le)
lemma abs_le_D1: "¦a¦ ≤ b ⟹ a ≤ b"
using abs_ge_self by (blast intro: order_trans)
lemma abs_le_D2: "¦a¦ ≤ b ⟹ - a ≤ b"
using abs_le_D1 [of "- a"] by simp
lemma abs_le_iff: "¦a¦ ≤ b ⟷ a ≤ b ∧ - a ≤ b"
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
lemma abs_triangle_ineq2: "¦a¦ - ¦b¦ ≤ ¦a - b¦"
proof -
have "¦a¦ = ¦b + (a - b)¦"
by (simp add: algebra_simps)
then have "¦a¦ ≤ ¦b¦ + ¦a - b¦"
by (simp add: abs_triangle_ineq)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma abs_triangle_ineq2_sym: "¦a¦ - ¦b¦ ≤ ¦b - a¦"
by (simp only: abs_minus_commute [of b] abs_triangle_ineq2)
lemma abs_triangle_ineq3: "¦¦a¦ - ¦b¦¦ ≤ ¦a - b¦"
by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym)
lemma abs_triangle_ineq4: "¦a - b¦ ≤ ¦a¦ + ¦b¦"
proof -
have "¦a - b¦ = ¦a + - b¦"
by (simp add: algebra_simps)
also have "… ≤ ¦a¦ + ¦- b¦"
by (rule abs_triangle_ineq)
finally show ?thesis by simp
qed
lemma abs_diff_triangle_ineq: "¦a + b - (c + d)¦ ≤ ¦a - c¦ + ¦b - d¦"
proof -
have "¦a + b - (c + d)¦ = ¦(a - c) + (b - d)¦"
by (simp add: algebra_simps)
also have "… ≤ ¦a - c¦ + ¦b - d¦"
by (rule abs_triangle_ineq)
finally show ?thesis .
qed
lemma abs_add_abs [simp]: "¦¦a¦ + ¦b¦¦ = ¦a¦ + ¦b¦"
(is "?L = ?R")
proof (rule order.antisym)
show "?L ≥ ?R" by (rule abs_ge_self)
have "?L ≤ ¦¦a¦¦ + ¦¦b¦¦" by (rule abs_triangle_ineq)
also have "… = ?R" by simp
finally show "?L ≤ ?R" .
qed
end
lemma dense_eq0_I:
fixes x::"'a::{dense_linorder,ordered_ab_group_add_abs}"
assumes "⋀e. 0 < e ⟹ ¦x¦ ≤ e"
shows "x = 0"
proof (cases "¦x¦ = 0")
case False
then have "¦x¦ > 0"
by simp
then obtain z where "0 < z" "z < ¦x¦"
using dense by force
then show ?thesis
using assms by (simp flip: not_less)
qed auto
hide_fact (open) ab_diff_conv_add_uminus add_0 mult_1 ab_left_minus
lemmas add_0 = add_0_left
lemmas mult_1 = mult_1_left
lemmas ab_left_minus = left_minus
lemmas diff_diff_eq = diff_diff_add
subsection ‹Canonically ordered monoids›
text ‹Canonically ordered monoids are never groups.›
class canonically_ordered_monoid_add = comm_monoid_add + order +
assumes le_iff_add: "a ≤ b ⟷ (∃c. b = a + c)"
begin
lemma zero_le[simp]: "0 ≤ x"
by (auto simp: le_iff_add)
lemma le_zero_eq[simp]: "n ≤ 0 ⟷ n = 0"
by (auto intro: order.antisym)
lemma not_less_zero[simp]: "¬ n < 0"
by (auto simp: less_le)
lemma zero_less_iff_neq_zero: "0 < n ⟷ n ≠ 0"
by (auto simp: less_le)
text ‹This theorem is useful with ‹blast››
lemma gr_zeroI: "(n = 0 ⟹ False) ⟹ 0 < n"
by (rule zero_less_iff_neq_zero[THEN iffD2]) iprover
lemma not_gr_zero[simp]: "¬ 0 < n ⟷ n = 0"
by (simp add: zero_less_iff_neq_zero)
subclass ordered_comm_monoid_add
proof qed (auto simp: le_iff_add add_ac)
lemma gr_implies_not_zero: "m < n ⟹ n ≠ 0"
by auto
lemma add_eq_0_iff_both_eq_0[simp]: "x + y = 0 ⟷ x = 0 ∧ y = 0"
by (intro add_nonneg_eq_0_iff zero_le)
lemma zero_eq_add_iff_both_eq_0[simp]: "0 = x + y ⟷ x = 0 ∧ y = 0"
using add_eq_0_iff_both_eq_0[of x y] unfolding eq_commute[of 0] .
lemma less_eqE:
assumes ‹a ≤ b›
obtains c where ‹b = a + c›
using assms by (auto simp add: le_iff_add)
lemma lessE:
assumes ‹a < b›
obtains c where ‹b = a + c› and ‹c ≠ 0›
proof -
from assms have ‹a ≤ b› ‹a ≠ b›
by simp_all
from ‹a ≤ b› obtain c where ‹b = a + c›
by (rule less_eqE)
moreover have ‹c ≠ 0› using ‹a ≠ b› ‹b = a + c›
by auto
ultimately show ?thesis
by (rule that)
qed
lemmas zero_order = zero_le le_zero_eq not_less_zero zero_less_iff_neq_zero not_gr_zero
end
class ordered_cancel_comm_monoid_diff =
canonically_ordered_monoid_add + comm_monoid_diff + ordered_ab_semigroup_add_imp_le
begin
context
fixes a b :: 'a
assumes le: "a ≤ b"
begin
lemma add_diff_inverse: "a + (b - a) = b"
using le by (auto simp add: le_iff_add)
lemma add_diff_assoc: "c + (b - a) = c + b - a"
using le by (auto simp add: le_iff_add add.left_commute [of c])
lemma add_diff_assoc2: "b - a + c = b + c - a"
using le by (auto simp add: le_iff_add add.assoc)
lemma diff_add_assoc: "c + b - a = c + (b - a)"
using le by (simp add: add.commute add_diff_assoc)
lemma diff_add_assoc2: "b + c - a = b - a + c"
using le by (simp add: add.commute add_diff_assoc)
lemma diff_diff_right: "c - (b - a) = c + a - b"
by (simp add: add_diff_inverse add_diff_cancel_left [of a c "b - a", symmetric] add.commute)
lemma diff_add: "b - a + a = b"
by (simp add: add.commute add_diff_inverse)
lemma le_add_diff: "c ≤ b + c - a"
by (auto simp add: add.commute diff_add_assoc2 le_iff_add)
lemma le_imp_diff_is_add: "a ≤ b ⟹ b - a = c ⟷ b = c + a"
by (auto simp add: add.commute add_diff_inverse)
lemma le_diff_conv2: "c ≤ b - a ⟷ c + a ≤ b"
(is "?P ⟷ ?Q")
proof
assume ?P
then have "c + a ≤ b - a + a"
by (rule add_right_mono)
then show ?Q
by (simp add: add_diff_inverse add.commute)
next
assume ?Q
then have "a + c ≤ a + (b - a)"
by (simp add: add_diff_inverse add.commute)
then show ?P by simp
qed
end
end
subsection ‹Tools setup›
lemma add_mono_thms_linordered_semiring:
fixes i j k :: "'a::ordered_ab_semigroup_add"
shows "i ≤ j ∧ k ≤ l ⟹ i + k ≤ j + l"
and "i = j ∧ k ≤ l ⟹ i + k ≤ j + l"
and "i ≤ j ∧ k = l ⟹ i + k ≤ j + l"
and "i = j ∧ k = l ⟹ i + k = j + l"
by (rule add_mono, clarify+)+
lemma add_mono_thms_linordered_field:
fixes i j k :: "'a::ordered_cancel_ab_semigroup_add"
shows "i < j ∧ k = l ⟹ i + k < j + l"
and "i = j ∧ k < l ⟹ i + k < j + l"
and "i < j ∧ k ≤ l ⟹ i + k < j + l"
and "i ≤ j ∧ k < l ⟹ i + k < j + l"
and "i < j ∧ k < l ⟹ i + k < j + l"
by (auto intro: add_strict_right_mono add_strict_left_mono
add_less_le_mono add_le_less_mono add_strict_mono)
code_identifier
code_module Groups ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith
end