Theory HOL.Parity
section ‹Parity in rings and semirings›
theory Parity
imports Euclidean_Rings
begin
subsection ‹Ring structures with parity and ‹even›/‹odd› predicates›
class semiring_parity = comm_semiring_1 + semiring_modulo +
assumes mod_2_eq_odd: ‹a mod 2 = of_bool (¬ 2 dvd a)›
and odd_one [simp]: ‹¬ 2 dvd 1›
and even_half_succ_eq [simp]: ‹2 dvd a ⟹ (1 + a) div 2 = a div 2›
begin
abbreviation even :: "'a ⇒ bool"
where ‹even a ≡ 2 dvd a›
abbreviation odd :: "'a ⇒ bool"
where ‹odd a ≡ ¬ 2 dvd a›
end
class ring_parity = ring + semiring_parity
begin
subclass comm_ring_1 ..
end
instance nat :: semiring_parity
by standard (auto simp add: dvd_eq_mod_eq_0)
instance int :: ring_parity
by standard (auto simp add: dvd_eq_mod_eq_0)
context semiring_parity
begin
lemma evenE [elim?]:
assumes ‹even a›
obtains b where ‹a = 2 * b›
using assms by (rule dvdE)
lemma oddE [elim?]:
assumes ‹odd a›
obtains b where ‹a = 2 * b + 1›
proof -
have ‹a = 2 * (a div 2) + a mod 2›
by (simp add: mult_div_mod_eq)
with assms have ‹a = 2 * (a div 2) + 1›
by (simp add: mod_2_eq_odd)
then show thesis ..
qed
lemma of_bool_odd_eq_mod_2:
‹of_bool (odd a) = a mod 2›
by (simp add: mod_2_eq_odd)
lemma odd_of_bool_self [simp]:
‹odd (of_bool p) ⟷ p›
by (cases p) simp_all
lemma not_mod_2_eq_0_eq_1 [simp]:
‹a mod 2 ≠ 0 ⟷ a mod 2 = 1›
by (simp add: mod_2_eq_odd)
lemma not_mod_2_eq_1_eq_0 [simp]:
‹a mod 2 ≠ 1 ⟷ a mod 2 = 0›
by (simp add: mod_2_eq_odd)
lemma even_iff_mod_2_eq_zero:
‹2 dvd a ⟷ a mod 2 = 0›
by (simp add: mod_2_eq_odd)
lemma odd_iff_mod_2_eq_one:
‹¬ 2 dvd a ⟷ a mod 2 = 1›
by (simp add: mod_2_eq_odd)
lemma even_mod_2_iff [simp]:
‹even (a mod 2) ⟷ even a›
by (simp add: mod_2_eq_odd)
lemma mod2_eq_if:
"a mod 2 = (if even a then 0 else 1)"
by (simp add: mod_2_eq_odd)
lemma zero_mod_two_eq_zero [simp]:
‹0 mod 2 = 0›
by (simp add: mod_2_eq_odd)
lemma one_mod_two_eq_one [simp]:
‹1 mod 2 = 1›
by (simp add: mod_2_eq_odd)
lemma parity_cases [case_names even odd]:
assumes ‹even a ⟹ a mod 2 = 0 ⟹ P›
assumes ‹odd a ⟹ a mod 2 = 1 ⟹ P›
shows P
using assms by (auto simp add: mod_2_eq_odd)
lemma even_zero [simp]:
‹even 0›
by (fact dvd_0_right)
lemma odd_even_add:
"even (a + b)" if "odd a" and "odd b"
proof -
from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1"
by (blast elim: oddE)
then have "a + b = 2 * c + 2 * d + (1 + 1)"
by (simp only: ac_simps)
also have "… = 2 * (c + d + 1)"
by (simp add: algebra_simps)
finally show ?thesis ..
qed
lemma even_add [simp]:
"even (a + b) ⟷ (even a ⟷ even b)"
by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add)
lemma odd_add [simp]:
"odd (a + b) ⟷ ¬ (odd a ⟷ odd b)"
by simp
lemma even_plus_one_iff [simp]:
"even (a + 1) ⟷ odd a"
by (auto simp add: dvd_add_right_iff intro: odd_even_add)
lemma even_mult_iff [simp]:
"even (a * b) ⟷ even a ∨ even b" (is "?P ⟷ ?Q")
proof
assume ?Q
then show ?P
by auto
next
assume ?P
show ?Q
proof (rule ccontr)
assume "¬ (even a ∨ even b)"
then have "odd a" and "odd b"
by auto
then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1"
by (blast elim: oddE)
then have "a * b = (2 * r + 1) * (2 * s + 1)"
by simp
also have "… = 2 * (2 * r * s + r + s) + 1"
by (simp add: algebra_simps)
finally have "odd (a * b)"
by simp
with ‹?P› show False
by auto
qed
qed
lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))"
proof -
have "even (2 * numeral n)"
unfolding even_mult_iff by simp
then have "even (numeral n + numeral n)"
unfolding mult_2 .
then show ?thesis
unfolding numeral.simps .
qed
lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))"
proof
assume "even (numeral (num.Bit1 n))"
then have "even (numeral n + numeral n + 1)"
unfolding numeral.simps .
then have "even (2 * numeral n + 1)"
unfolding mult_2 .
then have "2 dvd numeral n * 2 + 1"
by (simp add: ac_simps)
then have "2 dvd 1"
using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp
then show False by simp
qed
lemma odd_numeral_BitM [simp]:
‹odd (numeral (Num.BitM w))›
by (cases w) simp_all
lemma even_power [simp]: "even (a ^ n) ⟷ even a ∧ n > 0"
by (induct n) auto
lemma even_prod_iff:
‹even (prod f A) ⟷ (∃a∈A. even (f a))› if ‹finite A›
using that by (induction A) simp_all
lemma even_half_maybe_succ_eq [simp]:
‹even a ⟹ (of_bool b + a) div 2 = a div 2›
by simp
lemma even_half_maybe_succ'_eq [simp]:
‹even a ⟹ (b mod 2 + a) div 2 = a div 2›
by (simp add: mod2_eq_if)
lemma mask_eq_sum_exp:
‹2 ^ n - 1 = (∑m∈{q. q < n}. 2 ^ m)›
proof -
have *: ‹{q. q < Suc m} = insert m {q. q < m}› for m
by auto
have ‹2 ^ n = (∑m∈{q. q < n}. 2 ^ m) + 1›
by (induction n) (simp_all add: ac_simps mult_2 *)
then have ‹2 ^ n - 1 = (∑m∈{q. q < n}. 2 ^ m) + 1 - 1›
by simp
then show ?thesis
by simp
qed
lemma (in -) mask_eq_sum_exp_nat:
‹2 ^ n - Suc 0 = (∑m∈{q. q < n}. 2 ^ m)›
using mask_eq_sum_exp [where ?'a = nat] by simp
end
context ring_parity
begin
lemma even_minus:
"even (- a) ⟷ even a"
by (fact dvd_minus_iff)
lemma even_diff [simp]:
"even (a - b) ⟷ even (a + b)"
using even_add [of a "- b"] by simp
end
subsection ‹Instance for \<^typ>‹nat››
lemma even_Suc_Suc_iff [simp]:
"even (Suc (Suc n)) ⟷ even n"
using dvd_add_triv_right_iff [of 2 n] by simp
lemma even_Suc [simp]: "even (Suc n) ⟷ odd n"
using even_plus_one_iff [of n] by simp
lemma even_diff_nat [simp]:
"even (m - n) ⟷ m < n ∨ even (m + n)" for m n :: nat
proof (cases "n ≤ m")
case True
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right)
moreover have "even (m - n) ⟷ even (m - n + n * 2)" by simp
ultimately have "even (m - n) ⟷ even (m + n)" by (simp only:)
then show ?thesis by auto
next
case False
then show ?thesis by simp
qed
lemma odd_pos:
"odd n ⟹ 0 < n" for n :: nat
by (auto elim: oddE)
lemma Suc_double_not_eq_double:
"Suc (2 * m) ≠ 2 * n"
proof
assume "Suc (2 * m) = 2 * n"
moreover have "odd (Suc (2 * m))" and "even (2 * n)"
by simp_all
ultimately show False by simp
qed
lemma double_not_eq_Suc_double:
"2 * m ≠ Suc (2 * n)"
using Suc_double_not_eq_double [of n m] by simp
lemma odd_Suc_minus_one [simp]: "odd n ⟹ Suc (n - Suc 0) = n"
by (auto elim: oddE)
lemma even_Suc_div_two [simp]:
"even n ⟹ Suc n div 2 = n div 2"
by auto
lemma odd_Suc_div_two [simp]:
"odd n ⟹ Suc n div 2 = Suc (n div 2)"
by (auto elim: oddE)
lemma odd_two_times_div_two_nat [simp]:
assumes "odd n"
shows "2 * (n div 2) = n - (1 :: nat)"
proof -
from assms have "2 * (n div 2) + 1 = n"
by (auto elim: oddE)
then have "Suc (2 * (n div 2)) - 1 = n - 1"
by simp
then show ?thesis
by simp
qed
lemma not_mod2_eq_Suc_0_eq_0 [simp]:
"n mod 2 ≠ Suc 0 ⟷ n mod 2 = 0"
using not_mod_2_eq_1_eq_0 [of n] by simp
lemma odd_card_imp_not_empty:
‹A ≠ {}› if ‹odd (card A)›
using that by auto
lemma nat_induct2 [case_names 0 1 step]:
assumes "P 0" "P 1" and step: "⋀n::nat. P n ⟹ P (n + 2)"
shows "P n"
proof (induct n rule: less_induct)
case (less n)
show ?case
proof (cases "n < Suc (Suc 0)")
case True
then show ?thesis
using assms by (auto simp: less_Suc_eq)
next
case False
then obtain k where k: "n = Suc (Suc k)"
by (force simp: not_less nat_le_iff_add)
then have "k<n"
by simp
with less assms have "P (k+2)"
by blast
then show ?thesis
by (simp add: k)
qed
qed
lemma mod_double_nat:
‹n mod (2 * m) = n mod m ∨ n mod (2 * m) = n mod m + m›
for m n :: nat
by (cases ‹even (n div m)›)
(simp_all add: mod_mult2_eq ac_simps even_iff_mod_2_eq_zero)
context semiring_parity
begin
lemma even_sum_iff:
‹even (sum f A) ⟷ even (card {a∈A. odd (f a)})› if ‹finite A›
using that proof (induction A)
case empty
then show ?case
by simp
next
case (insert a A)
moreover have ‹{b ∈ insert a A. odd (f b)} = (if odd (f a) then {a} else {}) ∪ {b ∈ A. odd (f b)}›
by auto
ultimately show ?case
by simp
qed
lemma even_mask_iff [simp]:
‹even (2 ^ n - 1) ⟷ n = 0›
proof (cases ‹n = 0›)
case True
then show ?thesis
by simp
next
case False
then have ‹{a. a = 0 ∧ a < n} = {0}›
by auto
then show ?thesis
by (auto simp add: mask_eq_sum_exp even_sum_iff)
qed
lemma even_of_nat_iff [simp]:
"even (of_nat n) ⟷ even n"
by (induction n) simp_all
end
subsection ‹Parity and powers›
context ring_1
begin
lemma power_minus_even [simp]: "even n ⟹ (- a) ^ n = a ^ n"
by (auto elim: evenE)
lemma power_minus_odd [simp]: "odd n ⟹ (- a) ^ n = - (a ^ n)"
by (auto elim: oddE)
lemma uminus_power_if:
"(- a) ^ n = (if even n then a ^ n else - (a ^ n))"
by auto
lemma neg_one_even_power [simp]: "even n ⟹ (- 1) ^ n = 1"
by simp
lemma neg_one_odd_power [simp]: "odd n ⟹ (- 1) ^ n = - 1"
by simp
lemma neg_one_power_add_eq_neg_one_power_diff: "k ≤ n ⟹ (- 1) ^ (n + k) = (- 1) ^ (n - k)"
by (cases "even (n + k)") auto
lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)"
by (induct n) auto
end
context linordered_idom
begin
lemma zero_le_even_power: "even n ⟹ 0 ≤ a ^ n"
by (auto elim: evenE)
lemma zero_le_odd_power: "odd n ⟹ 0 ≤ a ^ n ⟷ 0 ≤ a"
by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE)
lemma zero_le_power_eq: "0 ≤ a ^ n ⟷ even n ∨ odd n ∧ 0 ≤ a"
by (auto simp add: zero_le_even_power zero_le_odd_power)
lemma zero_less_power_eq: "0 < a ^ n ⟷ n = 0 ∨ even n ∧ a ≠ 0 ∨ odd n ∧ 0 < a"
proof -
have [simp]: "0 = a ^ n ⟷ a = 0 ∧ n > 0"
unfolding power_eq_0_iff [of a n, symmetric] by blast
show ?thesis
unfolding less_le zero_le_power_eq by auto
qed
lemma power_less_zero_eq [simp]: "a ^ n < 0 ⟷ odd n ∧ a < 0"
unfolding not_le [symmetric] zero_le_power_eq by auto
lemma power_le_zero_eq: "a ^ n ≤ 0 ⟷ n > 0 ∧ (odd n ∧ a ≤ 0 ∨ even n ∧ a = 0)"
unfolding not_less [symmetric] zero_less_power_eq by auto
lemma power_even_abs: "even n ⟹ ¦a¦ ^ n = a ^ n"
using power_abs [of a n] by (simp add: zero_le_even_power)
lemma power_mono_even:
assumes "even n" and "¦a¦ ≤ ¦b¦"
shows "a ^ n ≤ b ^ n"
proof -
have "0 ≤ ¦a¦" by auto
with ‹¦a¦ ≤ ¦b¦› have "¦a¦ ^ n ≤ ¦b¦ ^ n"
by (rule power_mono)
with ‹even n› show ?thesis
by (simp add: power_even_abs)
qed
lemma power_mono_odd:
assumes "odd n" and "a ≤ b"
shows "a ^ n ≤ b ^ n"
proof (cases "b < 0")
case True
with ‹a ≤ b› have "- b ≤ - a" and "0 ≤ - b" by auto
then have "(- b) ^ n ≤ (- a) ^ n" by (rule power_mono)
with ‹odd n› show ?thesis by simp
next
case False
then have "0 ≤ b" by auto
show ?thesis
proof (cases "a < 0")
case True
then have "n ≠ 0" and "a ≤ 0" using ‹odd n› [THEN odd_pos] by auto
then have "a ^ n ≤ 0" unfolding power_le_zero_eq using ‹odd n› by auto
moreover from ‹0 ≤ b› have "0 ≤ b ^ n" by auto
ultimately show ?thesis by auto
next
case False
then have "0 ≤ a" by auto
with ‹a ≤ b› show ?thesis
using power_mono by auto
qed
qed
text ‹Simplify, when the exponent is a numeral›
lemma zero_le_power_eq_numeral [simp]:
"0 ≤ a ^ numeral w ⟷ even (numeral w :: nat) ∨ odd (numeral w :: nat) ∧ 0 ≤ a"
by (fact zero_le_power_eq)
lemma zero_less_power_eq_numeral [simp]:
"0 < a ^ numeral w ⟷
numeral w = (0 :: nat) ∨
even (numeral w :: nat) ∧ a ≠ 0 ∨
odd (numeral w :: nat) ∧ 0 < a"
by (fact zero_less_power_eq)
lemma power_le_zero_eq_numeral [simp]:
"a ^ numeral w ≤ 0 ⟷
(0 :: nat) < numeral w ∧
(odd (numeral w :: nat) ∧ a ≤ 0 ∨ even (numeral w :: nat) ∧ a = 0)"
by (fact power_le_zero_eq)
lemma power_less_zero_eq_numeral [simp]:
"a ^ numeral w < 0 ⟷ odd (numeral w :: nat) ∧ a < 0"
by (fact power_less_zero_eq)
lemma power_even_abs_numeral [simp]:
"even (numeral w :: nat) ⟹ ¦a¦ ^ numeral w = a ^ numeral w"
by (fact power_even_abs)
end
subsection ‹Instance for \<^typ>‹int››
lemma even_diff_iff:
"even (k - l) ⟷ even (k + l)" for k l :: int
by (fact even_diff)
lemma even_abs_add_iff:
"even (¦k¦ + l) ⟷ even (k + l)" for k l :: int
by simp
lemma even_add_abs_iff:
"even (k + ¦l¦) ⟷ even (k + l)" for k l :: int
by simp
lemma even_nat_iff: "0 ≤ k ⟹ even (nat k) ⟷ even k"
by (simp add: even_of_nat_iff [of "nat k", where ?'a = int, symmetric])
context
assumes "SORT_CONSTRAINT('a::division_ring)"
begin
lemma power_int_minus_left:
"power_int (-a :: 'a) n = (if even n then power_int a n else -power_int a n)"
by (auto simp: power_int_def minus_one_power_iff even_nat_iff)
lemma power_int_minus_left_even [simp]: "even n ⟹ power_int (-a :: 'a) n = power_int a n"
by (simp add: power_int_minus_left)
lemma power_int_minus_left_odd [simp]: "odd n ⟹ power_int (-a :: 'a) n = -power_int a n"
by (simp add: power_int_minus_left)
lemma power_int_minus_left_distrib:
"NO_MATCH (-1) x ⟹ power_int (-a :: 'a) n = power_int (-1) n * power_int a n"
by (simp add: power_int_minus_left)
lemma power_int_minus_one_minus: "power_int (-1 :: 'a) (-n) = power_int (-1) n"
by (simp add: power_int_minus_left)
lemma power_int_minus_one_diff_commute: "power_int (-1 :: 'a) (a - b) = power_int (-1) (b - a)"
by (subst power_int_minus_one_minus [symmetric]) auto
lemma power_int_minus_one_mult_self [simp]:
"power_int (-1 :: 'a) m * power_int (-1) m = 1"
by (simp add: power_int_minus_left)
lemma power_int_minus_one_mult_self' [simp]:
"power_int (-1 :: 'a) m * (power_int (-1) m * b) = b"
by (simp add: power_int_minus_left)
end
subsection ‹Special case: euclidean rings structurally containing the natural numbers›
class linordered_euclidean_semiring = discrete_linordered_semidom + unique_euclidean_semiring +
assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n"
and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1"
and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a"
begin
lemma division_segment_eq_iff:
"a = b" if "division_segment a = division_segment b"
and "euclidean_size a = euclidean_size b"
using that division_segment_euclidean_size [of a] by simp
lemma euclidean_size_of_nat [simp]:
"euclidean_size (of_nat n) = n"
proof -
have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n"
by (fact division_segment_euclidean_size)
then show ?thesis by simp
qed
lemma of_nat_euclidean_size:
"of_nat (euclidean_size a) = a div division_segment a"
proof -
have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a"
by (subst nonzero_mult_div_cancel_left) simp_all
also have "… = a div division_segment a"
by simp
finally show ?thesis .
qed
lemma division_segment_1 [simp]:
"division_segment 1 = 1"
using division_segment_of_nat [of 1] by simp
lemma division_segment_numeral [simp]:
"division_segment (numeral k) = 1"
using division_segment_of_nat [of "numeral k"] by simp
lemma euclidean_size_1 [simp]:
"euclidean_size 1 = 1"
using euclidean_size_of_nat [of 1] by simp
lemma euclidean_size_numeral [simp]:
"euclidean_size (numeral k) = numeral k"
using euclidean_size_of_nat [of "numeral k"] by simp
lemma of_nat_dvd_iff:
"of_nat m dvd of_nat n ⟷ m dvd n" (is "?P ⟷ ?Q")
proof (cases "m = 0")
case True
then show ?thesis
by simp
next
case False
show ?thesis
proof
assume ?Q
then show ?P
by auto
next
assume ?P
with False have "of_nat n = of_nat n div of_nat m * of_nat m"
by simp
then have "of_nat n = of_nat (n div m * m)"
by (simp add: of_nat_div)
then have "n = n div m * m"
by (simp only: of_nat_eq_iff)
then have "n = m * (n div m)"
by (simp add: ac_simps)
then show ?Q ..
qed
qed
lemma of_nat_mod:
"of_nat (m mod n) = of_nat m mod of_nat n"
proof -
have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m"
by (simp add: div_mult_mod_eq)
also have "of_nat m = of_nat (m div n * n + m mod n)"
by simp
finally show ?thesis
by (simp only: of_nat_div of_nat_mult of_nat_add) simp
qed
lemma one_div_two_eq_zero [simp]:
"1 div 2 = 0"
proof -
from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0"
by (simp only:) simp
then show ?thesis
by simp
qed
lemma one_mod_2_pow_eq [simp]:
"1 mod (2 ^ n) = of_bool (n > 0)"
proof -
have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))"
using of_nat_mod [of 1 "2 ^ n"] by simp
also have "… = of_bool (n > 0)"
by simp
finally show ?thesis .
qed
lemma one_div_2_pow_eq [simp]:
"1 div (2 ^ n) = of_bool (n = 0)"
using div_mult_mod_eq [of 1 "2 ^ n"] by auto
lemma div_mult2_eq':
‹a div (of_nat m * of_nat n) = a div of_nat m div of_nat n›
proof (cases ‹m = 0 ∨ n = 0›)
case True
then show ?thesis
by auto
next
case False
then have ‹m > 0› ‹n > 0›
by simp_all
show ?thesis
proof (cases ‹of_nat m * of_nat n dvd a›)
case True
then obtain b where ‹a = (of_nat m * of_nat n) * b› ..
then have ‹a = of_nat m * (of_nat n * b)›
by (simp add: ac_simps)
then show ?thesis
by simp
next
case False
define q where ‹q = a div (of_nat m * of_nat n)›
define r where ‹r = a mod (of_nat m * of_nat n)›
from ‹m > 0› ‹n > 0› ‹¬ of_nat m * of_nat n dvd a› r_def have "division_segment r = 1"
using division_segment_of_nat [of "m * n"] by (simp add: division_segment_mod)
with division_segment_euclidean_size [of r]
have "of_nat (euclidean_size r) = r"
by simp
have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0"
by simp
with ‹m > 0› ‹n > 0› r_def have "r div (of_nat m * of_nat n) = 0"
by simp
with ‹of_nat (euclidean_size r) = r›
have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0"
by simp
then have "of_nat (euclidean_size r div (m * n)) = 0"
by (simp add: of_nat_div)
then have "of_nat (euclidean_size r div m div n) = 0"
by (simp add: div_mult2_eq)
with ‹of_nat (euclidean_size r) = r› have "r div of_nat m div of_nat n = 0"
by (simp add: of_nat_div)
with ‹m > 0› ‹n > 0› q_def
have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n"
by simp
moreover have ‹a = q * (of_nat m * of_nat n) + r›
by (simp add: q_def r_def div_mult_mod_eq)
ultimately show ‹a div (of_nat m * of_nat n) = a div of_nat m div of_nat n›
using q_def [symmetric] div_plus_div_distrib_dvd_right [of ‹of_nat m› ‹q * (of_nat m * of_nat n)› r]
by (simp add: ac_simps)
qed
qed
lemma mod_mult2_eq':
"a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m"
proof -
have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)"
by (simp add: combine_common_factor div_mult_mod_eq)
moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)"
by (simp add: ac_simps)
ultimately show ?thesis
by (simp add: div_mult2_eq' mult_commute)
qed
lemma div_mult2_numeral_eq:
"a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B")
proof -
have "?A = a div of_nat (numeral k) div of_nat (numeral l)"
by simp
also have "… = a div (of_nat (numeral k) * of_nat (numeral l))"
by (fact div_mult2_eq' [symmetric])
also have "… = ?B"
by simp
finally show ?thesis .
qed
lemma numeral_Bit0_div_2:
"numeral (num.Bit0 n) div 2 = numeral n"
proof -
have "numeral (num.Bit0 n) = numeral n + numeral n"
by (simp only: numeral.simps)
also have "… = numeral n * 2"
by (simp add: mult_2_right)
finally have "numeral (num.Bit0 n) div 2 = numeral n * 2 div 2"
by simp
also have "… = numeral n"
by (rule nonzero_mult_div_cancel_right) simp
finally show ?thesis .
qed
lemma numeral_Bit1_div_2:
"numeral (num.Bit1 n) div 2 = numeral n"
proof -
have "numeral (num.Bit1 n) = numeral n + numeral n + 1"
by (simp only: numeral.simps)
also have "… = numeral n * 2 + 1"
by (simp add: mult_2_right)
finally have "numeral (num.Bit1 n) div 2 = (numeral n * 2 + 1) div 2"
by simp
also have "… = numeral n * 2 div 2 + 1 div 2"
using dvd_triv_right by (rule div_plus_div_distrib_dvd_left)
also have "… = numeral n * 2 div 2"
by simp
also have "… = numeral n"
by (rule nonzero_mult_div_cancel_right) simp
finally show ?thesis .
qed
lemma exp_mod_exp:
‹2 ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m›
proof -
have ‹(2::nat) ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m› (is ‹?lhs = ?rhs›)
by (auto simp add: linorder_class.not_less monoid_mult_class.power_add dest!: le_Suc_ex)
then have ‹of_nat ?lhs = of_nat ?rhs›
by simp
then show ?thesis
by (simp add: of_nat_mod)
qed
lemma mask_mod_exp:
‹(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - 1›
proof -
have ‹(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - (1::nat)› (is ‹?lhs = ?rhs›)
proof (cases ‹n ≤ m›)
case True
then show ?thesis
by (simp add: Suc_le_lessD)
next
case False
then have ‹m < n›
by simp
then obtain q where n: ‹n = Suc q + m›
by (auto dest: less_imp_Suc_add)
then have ‹min m n = m›
by simp
moreover have ‹(2::nat) ^ m ≤ 2 * 2 ^ q * 2 ^ m›
using mult_le_mono1 [of 1 ‹2 * 2 ^ q› ‹2 ^ m›] by simp
with n have ‹2 ^ n - 1 = (2 ^ Suc q - 1) * 2 ^ m + (2 ^ m - (1::nat))›
by (simp add: monoid_mult_class.power_add algebra_simps)
ultimately show ?thesis
by (simp only: euclidean_semiring_cancel_class.mod_mult_self3) simp
qed
then have ‹of_nat ?lhs = of_nat ?rhs›
by simp
then show ?thesis
by (simp add: of_nat_mod of_nat_diff)
qed
lemma of_bool_half_eq_0 [simp]:
‹of_bool b div 2 = 0›
by simp
lemma of_nat_mod_double:
‹of_nat n mod (2 * of_nat m) = of_nat n mod of_nat m ∨ of_nat n mod (2 * of_nat m) = of_nat n mod of_nat m + of_nat m›
by (simp add: mod_double_nat flip: of_nat_mod of_nat_add of_nat_mult of_nat_numeral)
end
instance nat :: linordered_euclidean_semiring
by standard simp_all
instance int :: linordered_euclidean_semiring
by standard (auto simp add: divide_int_def division_segment_int_def elim: contrapos_np)
context linordered_euclidean_semiring
begin
subclass semiring_parity
proof
show ‹a mod 2 = of_bool (¬ 2 dvd a)› for a
proof (cases ‹2 dvd a›)
case True
then show ?thesis
by (simp add: dvd_eq_mod_eq_0)
next
case False
have eucl: "euclidean_size (a mod 2) = 1"
proof (rule Orderings.order_antisym)
show "euclidean_size (a mod 2) ≤ 1"
using mod_size_less [of 2 a] by simp
show "1 ≤ euclidean_size (a mod 2)"
using ‹¬ 2 dvd a› by (simp add: Suc_le_eq dvd_eq_mod_eq_0)
qed
from ‹¬ 2 dvd a› have "¬ of_nat 2 dvd division_segment a * of_nat (euclidean_size a)"
by simp
then have "¬ of_nat 2 dvd of_nat (euclidean_size a)"
by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment)
then have "¬ 2 dvd euclidean_size a"
using of_nat_dvd_iff [of 2] by simp
then have "euclidean_size a mod 2 = 1"
by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0)
then have "of_nat (euclidean_size a mod 2) = of_nat 1"
by simp
then have "of_nat (euclidean_size a) mod 2 = 1"
by (simp add: of_nat_mod)
from ‹¬ 2 dvd a› eucl
have "a mod 2 = 1"
by (auto intro: division_segment_eq_iff simp add: division_segment_mod)
with ‹¬ 2 dvd a› show ?thesis
by simp
qed
show ‹¬ is_unit 2›
proof
assume ‹is_unit 2›
then have ‹of_nat 2 dvd of_nat 1›
by simp
then have ‹is_unit (2::nat)›
by (simp only: of_nat_dvd_iff)
then show False
by simp
qed
show ‹(1 + a) div 2 = a div 2› if ‹2 dvd a› for a
using that by auto
qed
lemma even_succ_div_two [simp]:
"even a ⟹ (a + 1) div 2 = a div 2"
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero)
lemma odd_succ_div_two [simp]:
"odd a ⟹ (a + 1) div 2 = a div 2 + 1"
by (auto elim!: oddE simp add: add.assoc)
lemma even_two_times_div_two:
"even a ⟹ 2 * (a div 2) = a"
by (fact dvd_mult_div_cancel)
lemma odd_two_times_div_two_succ [simp]:
"odd a ⟹ 2 * (a div 2) + 1 = a"
using mult_div_mod_eq [of 2 a]
by (simp add: even_iff_mod_2_eq_zero)
lemma coprime_left_2_iff_odd [simp]:
"coprime 2 a ⟷ odd a"
proof
assume "odd a"
show "coprime 2 a"
proof (rule coprimeI)
fix b
assume "b dvd 2" "b dvd a"
then have "b dvd a mod 2"
by (auto intro: dvd_mod)
with ‹odd a› show "is_unit b"
by (simp add: mod_2_eq_odd)
qed
next
assume "coprime 2 a"
show "odd a"
proof (rule notI)
assume "even a"
then obtain b where "a = 2 * b" ..
with ‹coprime 2 a› have "coprime 2 (2 * b)"
by simp
moreover have "¬ coprime 2 (2 * b)"
by (rule not_coprimeI [of 2]) simp_all
ultimately show False
by blast
qed
qed
lemma coprime_right_2_iff_odd [simp]:
"coprime a 2 ⟷ odd a"
using coprime_left_2_iff_odd [of a] by (simp add: ac_simps)
end
lemma minus_1_mod_2_eq [simp]:
‹- 1 mod 2 = (1::int)›
by (simp add: mod_2_eq_odd)
lemma minus_1_div_2_eq [simp]:
"- 1 div 2 = - (1::int)"
proof -
from div_mult_mod_eq [of "- 1 :: int" 2]
have "- 1 div 2 * 2 = - 1 * (2 :: int)"
using add_implies_diff by fastforce
then show ?thesis
using mult_right_cancel [of 2 "- 1 div 2" "- (1 :: int)"] by simp
qed
context linordered_euclidean_semiring
begin
lemma even_decr_exp_div_exp_iff':
‹even ((2 ^ m - 1) div 2 ^ n) ⟷ m ≤ n›
proof -
have ‹even ((2 ^ m - 1) div 2 ^ n) ⟷ even (of_nat ((2 ^ m - Suc 0) div 2 ^ n))›
by (simp only: of_nat_div) (simp add: of_nat_diff)
also have ‹… ⟷ even ((2 ^ m - Suc 0) div 2 ^ n)›
by simp
also have ‹… ⟷ m ≤ n›
proof (cases ‹m ≤ n›)
case True
then show ?thesis
by (simp add: Suc_le_lessD)
next
case False
then obtain r where r: ‹m = n + Suc r›
using less_imp_Suc_add by fastforce
from r have ‹{q. q < m} ∩ {q. 2 ^ n dvd (2::nat) ^ q} = {q. n ≤ q ∧ q < m}›
by (auto simp add: dvd_power_iff_le)
moreover from r have ‹{q. q < m} ∩ {q. ¬ 2 ^ n dvd (2::nat) ^ q} = {q. q < n}›
by (auto simp add: dvd_power_iff_le)
moreover from False have ‹{q. n ≤ q ∧ q < m ∧ q ≤ n} = {n}›
by auto
then have ‹odd ((∑a∈{q. n ≤ q ∧ q < m}. 2 ^ a div (2::nat) ^ n) + sum ((^) 2) {q. q < n} div 2 ^ n)›
by (simp_all add: euclidean_semiring_cancel_class.power_diff_power_eq semiring_parity_class.even_sum_iff
linorder_class.not_less mask_eq_sum_exp_nat [symmetric])
ultimately have ‹odd (sum ((^) (2::nat)) {q. q < m} div 2 ^ n)›
by (subst euclidean_semiring_cancel_class.sum_div_partition) simp_all
with False show ?thesis
by (simp add: mask_eq_sum_exp_nat)
qed
finally show ?thesis .
qed
end
subsection ‹Generic symbolic computations›
text ‹
The following type class contains everything necessary to formulate
a division algorithm in ring structures with numerals, restricted
to its positive segments.
›
class linordered_euclidean_semiring_division = linordered_euclidean_semiring +
fixes divmod :: ‹num ⇒ num ⇒ 'a × 'a›
and divmod_step :: ‹'a ⇒ 'a × 'a ⇒ 'a × 'a›
assumes divmod_def: ‹divmod m n = (numeral m div numeral n, numeral m mod numeral n)›
and divmod_step_def [simp]: ‹divmod_step l (q, r) =
(if euclidean_size l ≤ euclidean_size r then (2 * q + 1, r - l)
else (2 * q, r))›
begin
lemma fst_divmod:
‹fst (divmod m n) = numeral m div numeral n›
by (simp add: divmod_def)
lemma snd_divmod:
‹snd (divmod m n) = numeral m mod numeral n›
by (simp add: divmod_def)
text ‹
Following a formulation of school-method division.
If the divisor is smaller than the dividend, terminate.
If not, shift the dividend to the right until termination
occurs and then reiterate single division steps in the
opposite direction.
›
lemma divmod_divmod_step:
‹divmod m n = (if m < n then (0, numeral m)
else divmod_step (numeral n) (divmod m (Num.Bit0 n)))›
proof (cases ‹m < n›)
case True
then show ?thesis
by (simp add: prod_eq_iff fst_divmod snd_divmod flip: of_nat_numeral of_nat_div of_nat_mod)
next
case False
define r s t where ‹r = (numeral m :: nat)› ‹s = (numeral n :: nat)› ‹t = 2 * s›
then have *: ‹numeral m = of_nat r› ‹numeral n = of_nat s› ‹numeral (num.Bit0 n) = of_nat t›
and ‹¬ s ≤ r mod s›
by (simp_all add: linorder_class.not_le)
have t: ‹2 * (r div t) = r div s - r div s mod 2›
‹r mod t = s * (r div s mod 2) + r mod s›
by (simp add: Rings.minus_mod_eq_mult_div Groups.mult.commute [of 2] Euclidean_Rings.div_mult2_eq ‹t = 2 * s›)
(use mod_mult2_eq [of r s 2] in ‹simp add: ac_simps ‹t = 2 * s››)
have rs: ‹r div s mod 2 = 0 ∨ r div s mod 2 = Suc 0›
by auto
from ‹¬ s ≤ r mod s› have ‹s ≤ r mod t ⟹
r div s = Suc (2 * (r div t)) ∧
r mod s = r mod t - s›
using rs
by (auto simp add: t)
moreover have ‹r mod t < s ⟹
r div s = 2 * (r div t) ∧
r mod s = r mod t›
using rs
by (auto simp add: t)
ultimately show ?thesis
by (simp add: divmod_def prod_eq_iff split_def Let_def
not_less mod_eq_0_iff_dvd Rings.mod_eq_0_iff_dvd False not_le *)
(simp add: flip: of_nat_numeral of_nat_mult add.commute [of 1] of_nat_div of_nat_mod of_nat_Suc of_nat_diff)
qed
text ‹The division rewrite proper -- first, trivial results involving ‹1››
lemma divmod_trivial [simp]:
"divmod m Num.One = (numeral m, 0)"
"divmod num.One (num.Bit0 n) = (0, Numeral1)"
"divmod num.One (num.Bit1 n) = (0, Numeral1)"
using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def)
text ‹Division by an even number is a right-shift›
lemma divmod_cancel [simp]:
‹divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) ⇒ (q, 2 * r))› (is ?P)
‹divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) ⇒ (q, 2 * r + 1))› (is ?Q)
proof -
define r s where ‹r = (numeral m :: nat)› ‹s = (numeral n :: nat)›
then have *: ‹numeral m = of_nat r› ‹numeral n = of_nat s›
‹numeral (num.Bit0 m) = of_nat (2 * r)› ‹numeral (num.Bit0 n) = of_nat (2 * s)›
‹numeral (num.Bit1 m) = of_nat (Suc (2 * r))›
by simp_all
have **: ‹Suc (2 * r) div 2 = r›
by simp
show ?P and ?Q
by (simp_all add: divmod_def *)
(simp_all flip: of_nat_numeral of_nat_div of_nat_mod of_nat_mult add.commute [of 1] of_nat_Suc
add: Euclidean_Rings.mod_mult_mult1 div_mult2_eq [of _ 2] mod_mult2_eq [of _ 2] **)
qed
text ‹The really hard work›
lemma divmod_steps [simp]:
"divmod (num.Bit0 m) (num.Bit1 n) =
(if m ≤ n then (0, numeral (num.Bit0 m))
else divmod_step (numeral (num.Bit1 n))
(divmod (num.Bit0 m)
(num.Bit0 (num.Bit1 n))))"
"divmod (num.Bit1 m) (num.Bit1 n) =
(if m < n then (0, numeral (num.Bit1 m))
else divmod_step (numeral (num.Bit1 n))
(divmod (num.Bit1 m)
(num.Bit0 (num.Bit1 n))))"
by (simp_all add: divmod_divmod_step)
lemmas divmod_algorithm_code = divmod_trivial divmod_cancel divmod_steps
text ‹Special case: divisibility›
definition divides_aux :: "'a × 'a ⇒ bool"
where
"divides_aux qr ⟷ snd qr = 0"
lemma divides_aux_eq [simp]:
"divides_aux (q, r) ⟷ r = 0"
by (simp add: divides_aux_def)
lemma dvd_numeral_simp [simp]:
"numeral m dvd numeral n ⟷ divides_aux (divmod n m)"
by (simp add: divmod_def mod_eq_0_iff_dvd)
text ‹Generic computation of quotient and remainder›
lemma numeral_div_numeral [simp]:
"numeral k div numeral l = fst (divmod k l)"
by (simp add: fst_divmod)
lemma numeral_mod_numeral [simp]:
"numeral k mod numeral l = snd (divmod k l)"
by (simp add: snd_divmod)
lemma one_div_numeral [simp]:
"1 div numeral n = fst (divmod num.One n)"
by (simp add: fst_divmod)
lemma one_mod_numeral [simp]:
"1 mod numeral n = snd (divmod num.One n)"
by (simp add: snd_divmod)
end
instantiation nat :: linordered_euclidean_semiring_division
begin
definition divmod_nat :: "num ⇒ num ⇒ nat × nat"
where
divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)"
definition divmod_step_nat :: "nat ⇒ nat × nat ⇒ nat × nat"
where
"divmod_step_nat l qr = (let (q, r) = qr
in if r ≥ l then (2 * q + 1, r - l)
else (2 * q, r))"
instance
by standard (simp_all add: divmod'_nat_def divmod_step_nat_def)
end
declare divmod_algorithm_code [where ?'a = nat, code]
lemma Suc_0_div_numeral [simp]:
‹Suc 0 div numeral Num.One = 1›
‹Suc 0 div numeral (Num.Bit0 n) = 0›
‹Suc 0 div numeral (Num.Bit1 n) = 0›
by simp_all
lemma Suc_0_mod_numeral [simp]:
‹Suc 0 mod numeral Num.One = 0›
‹Suc 0 mod numeral (Num.Bit0 n) = 1›
‹Suc 0 mod numeral (Num.Bit1 n) = 1›
by simp_all
instantiation int :: linordered_euclidean_semiring_division
begin
definition divmod_int :: "num ⇒ num ⇒ int × int"
where
"divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)"
definition divmod_step_int :: "int ⇒ int × int ⇒ int × int"
where
"divmod_step_int l qr = (let (q, r) = qr
in if ¦l¦ ≤ ¦r¦ then (2 * q + 1, r - l)
else (2 * q, r))"
instance
by standard (auto simp add: divmod_int_def divmod_step_int_def)
end
declare divmod_algorithm_code [where ?'a = int, code]
context
begin
qualified definition adjust_div :: "int × int ⇒ int"
where
"adjust_div qr = (let (q, r) = qr in q + of_bool (r ≠ 0))"
qualified lemma adjust_div_eq [simp, code]:
"adjust_div (q, r) = q + of_bool (r ≠ 0)"
by (simp add: adjust_div_def)
qualified definition adjust_mod :: "num ⇒ int ⇒ int"
where
[simp]: "adjust_mod l r = (if r = 0 then 0 else numeral l - r)"
lemma minus_numeral_div_numeral [simp]:
"- numeral m div numeral n = - (adjust_div (divmod m n) :: int)"
proof -
have "int (fst (divmod m n)) = fst (divmod m n)"
by (simp only: fst_divmod divide_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
qed
lemma minus_numeral_mod_numeral [simp]:
"- numeral m mod numeral n = adjust_mod n (snd (divmod m n) :: int)"
proof (cases "snd (divmod m n) = (0::int)")
case True
then show ?thesis
by (simp add: mod_eq_0_iff_dvd divides_aux_def)
next
case False
then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) ≠ (0::int)"
by (simp only: snd_divmod modulo_int_def) auto
then show ?thesis
by (simp add: divides_aux_def adjust_div_def)
(simp add: divides_aux_def modulo_int_def)
qed
lemma numeral_div_minus_numeral [simp]:
"numeral m div - numeral n = - (adjust_div (divmod m n) :: int)"
proof -
have "int (fst (divmod m n)) = fst (divmod m n)"
by (simp only: fst_divmod divide_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
qed
lemma numeral_mod_minus_numeral [simp]:
"numeral m mod - numeral n = - adjust_mod n (snd (divmod m n) :: int)"
proof (cases "snd (divmod m n) = (0::int)")
case True
then show ?thesis
by (simp add: mod_eq_0_iff_dvd divides_aux_def)
next
case False
then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) ≠ (0::int)"
by (simp only: snd_divmod modulo_int_def) auto
then show ?thesis
by (simp add: divides_aux_def adjust_div_def)
(simp add: divides_aux_def modulo_int_def)
qed
lemma minus_one_div_numeral [simp]:
"- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)"
using minus_numeral_div_numeral [of Num.One n] by simp
lemma minus_one_mod_numeral [simp]:
"- 1 mod numeral n = adjust_mod n (snd (divmod Num.One n) :: int)"
using minus_numeral_mod_numeral [of Num.One n] by simp
lemma one_div_minus_numeral [simp]:
"1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)"
using numeral_div_minus_numeral [of Num.One n] by simp
lemma one_mod_minus_numeral [simp]:
"1 mod - numeral n = - adjust_mod n (snd (divmod Num.One n) :: int)"
using numeral_mod_minus_numeral [of Num.One n] by simp
lemma [code]:
fixes k :: int
shows
"k div 0 = 0"
"k mod 0 = k"
"0 div k = 0"
"0 mod k = 0"
"k div Int.Pos Num.One = k"
"k mod Int.Pos Num.One = 0"
"k div Int.Neg Num.One = - k"
"k mod Int.Neg Num.One = 0"
"Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)"
"Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)"
"Int.Neg m div Int.Pos n = - (adjust_div (divmod m n) :: int)"
"Int.Neg m mod Int.Pos n = adjust_mod n (snd (divmod m n) :: int)"
"Int.Pos m div Int.Neg n = - (adjust_div (divmod m n) :: int)"
"Int.Pos m mod Int.Neg n = - adjust_mod n (snd (divmod m n) :: int)"
"Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)"
"Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)"
by simp_all
end
lemma divmod_BitM_2_eq [simp]:
‹divmod (Num.BitM m) (Num.Bit0 Num.One) = (numeral m - 1, (1 :: int))›
by (cases m) simp_all
subsubsection ‹Computation by simplification›
lemma euclidean_size_nat_less_eq_iff:
‹euclidean_size m ≤ euclidean_size n ⟷ m ≤ n› for m n :: nat
by simp
lemma euclidean_size_int_less_eq_iff:
‹euclidean_size k ≤ euclidean_size l ⟷ ¦k¦ ≤ ¦l¦› for k l :: int
by auto
simproc_setup numeral_divmod
("0 div 0 :: 'a :: linordered_euclidean_semiring_division" | "0 mod 0 :: 'a :: linordered_euclidean_semiring_division" |
"0 div 1 :: 'a :: linordered_euclidean_semiring_division" | "0 mod 1 :: 'a :: linordered_euclidean_semiring_division" |
"0 div - 1 :: int" | "0 mod - 1 :: int" |
"0 div numeral b :: 'a :: linordered_euclidean_semiring_division" | "0 mod numeral b :: 'a :: linordered_euclidean_semiring_division" |
"0 div - numeral b :: int" | "0 mod - numeral b :: int" |
"1 div 0 :: 'a :: linordered_euclidean_semiring_division" | "1 mod 0 :: 'a :: linordered_euclidean_semiring_division" |
"1 div 1 :: 'a :: linordered_euclidean_semiring_division" | "1 mod 1 :: 'a :: linordered_euclidean_semiring_division" |
"1 div - 1 :: int" | "1 mod - 1 :: int" |
"1 div numeral b :: 'a :: linordered_euclidean_semiring_division" | "1 mod numeral b :: 'a :: linordered_euclidean_semiring_division" |
"1 div - numeral b :: int" |"1 mod - numeral b :: int" |
"- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" |
"- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" |
"- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" |
"numeral a div 0 :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod 0 :: 'a :: linordered_euclidean_semiring_division" |
"numeral a div 1 :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod 1 :: 'a :: linordered_euclidean_semiring_division" |
"numeral a div - 1 :: int" | "numeral a mod - 1 :: int" |
"numeral a div numeral b :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod numeral b :: 'a :: linordered_euclidean_semiring_division" |
"numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" |
"- numeral a div 0 :: int" | "- numeral a mod 0 :: int" |
"- numeral a div 1 :: int" | "- numeral a mod 1 :: int" |
"- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" |
"- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" |
"- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") = ‹
let
val if_cong = the (Code.get_case_cong \<^theory> \<^const_name>‹If›);
fun successful_rewrite ctxt ct =
let
val thm = Simplifier.rewrite ctxt ct
in if Thm.is_reflexive thm then NONE else SOME thm end;
val simps = @{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1
one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral
one_div_minus_numeral one_mod_minus_numeral
numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral
numeral_div_minus_numeral numeral_mod_minus_numeral
div_minus_minus mod_minus_minus Parity.adjust_div_eq of_bool_eq one_neq_zero
numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial
divmod_cancel divmod_steps divmod_step_def fst_conv snd_conv numeral_One
case_prod_beta rel_simps Parity.adjust_mod_def div_minus1_right mod_minus1_right
minus_minus numeral_times_numeral mult_zero_right mult_1_right
euclidean_size_nat_less_eq_iff euclidean_size_int_less_eq_iff diff_nat_numeral nat_numeral}
@ [@{lemma "0 = 0 ⟷ True" by simp}];
val simpset =
HOL_ss |> Simplifier.simpset_map \<^context>
(Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps);
in K (fn ctxt => successful_rewrite (Simplifier.put_simpset simpset ctxt)) end
›
subsection ‹Computing congruences modulo ‹2 ^ q››
context linordered_euclidean_semiring_division
begin
lemma cong_exp_iff_simps:
"numeral n mod numeral Num.One = 0
⟷ True"
"numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) = 0
⟷ numeral n mod numeral q = 0"
"numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) = 0
⟷ False"
"numeral m mod numeral Num.One = (numeral n mod numeral Num.One)
⟷ True"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
⟷ True"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
⟷ False"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
⟷ (numeral n mod numeral q) = 0"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
⟷ False"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
⟷ numeral m mod numeral q = (numeral n mod numeral q)"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
⟷ False"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
⟷ (numeral m mod numeral q) = 0"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
⟷ False"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
⟷ numeral m mod numeral q = (numeral n mod numeral q)"
by (auto simp add: case_prod_beta dest: arg_cong [of _ _ even])
end
code_identifier
code_module Parity ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith
lemmas even_of_nat = even_of_nat_iff
end