File ‹~~/src/Tools/induction.ML›
signature INDUCTION =
sig
val induction_context_tactic: bool -> (binding option * (term * bool)) option list list ->
(string * typ) list list -> term option list -> thm list option ->
thm list -> int -> context_tactic
val induction_tac: Proof.context -> bool -> (binding option * (term * bool)) option list list ->
(string * typ) list list -> term option list -> thm list option ->
thm list -> int -> tactic
end
structure Induction: INDUCTION =
struct
val ind_hypsN = "IH";
fun preds_of t =
(case strip_comb t of
(p as Var _, _) => [p]
| (p as Free _, _) => [p]
| (_, ts) => maps preds_of ts);
val induction_context_tactic =
Induct.gen_induct_context_tactic (fn arg as ((cases, consumes), th) =>
if not (forall (null o #2 o #1) cases) then arg
else
let
val (prems, concl) = Logic.strip_horn (Thm.prop_of th);
val prems' = drop consumes prems;
val ps = preds_of concl;
fun hname_of t =
if exists_subterm (member (op aconv) ps) t
then ind_hypsN else Rule_Cases.case_hypsN;
val hnamess = map (map hname_of o Logic.strip_assums_hyp) prems';
val n = Int.min (length hnamess, length cases);
val cases' =
map (fn (((cn, _), concls), hns) => ((cn, hns), concls))
(take n cases ~~ take n hnamess);
in ((cases', consumes), th) end);
fun induction_tac ctxt simp def_insts arbitrary taking opt_rule facts i =
induction_context_tactic simp def_insts arbitrary taking opt_rule facts i
|> NO_CONTEXT_TACTIC ctxt;
val _ =
Theory.local_setup (Induct.gen_induct_setup \<^binding>‹induction› induction_context_tactic);
end