File ‹Tools/SMT/smt_translate.ML›
signature SMT_TRANSLATE =
sig
datatype squant = SForall | SExists
datatype 'a spattern = SPat of 'a list | SNoPat of 'a list
datatype sterm =
SVar of int * sterm list |
SConst of string * sterm list |
SQua of squant * string list * sterm spattern list * sterm
type sign = {
logic: string,
sorts: string list,
dtyps: (BNF_Util.fp_kind * (string * (string * (string * string) list) list)) list,
funcs: (string * (string list * string)) list }
type config = {
order: SMT_Util.order,
logic: string -> term list -> string,
fp_kinds: BNF_Util.fp_kind list,
serialize: (string * string) list -> string list -> sign -> (SMT_Util.role * sterm) list ->
string }
type replay_data = {
context: Proof.context,
typs: typ Symtab.table,
terms: term Symtab.table,
ll_defs: term list,
rewrite_rules: thm list,
assms: ((int * SMT_Util.role) * thm) list }
val add_config: SMT_Util.class * (Proof.context -> config) -> Context.generic -> Context.generic
val translate: Proof.context -> string -> (string * string) list -> string list ->
((int * SMT_Util.role) * thm) list ->
string * replay_data
end;
structure SMT_Translate: SMT_TRANSLATE =
struct
datatype squant = SForall | SExists
datatype 'a spattern =
SPat of 'a list | SNoPat of 'a list
datatype sterm =
SVar of int * sterm list |
SConst of string * sterm list |
SQua of squant * string list * sterm spattern list * sterm
type sign = {
logic: string,
sorts: string list,
dtyps: (BNF_Util.fp_kind * (string * (string * (string * string) list) list)) list,
funcs: (string * (string list * string)) list }
type config = {
order: SMT_Util.order,
logic: string -> term list -> string,
fp_kinds: BNF_Util.fp_kind list,
serialize: (string * string) list -> string list -> sign -> (SMT_Util.role * sterm) list ->
string }
type replay_data = {
context: Proof.context,
typs: typ Symtab.table,
terms: term Symtab.table,
ll_defs: term list,
rewrite_rules: thm list,
assms: ((int * SMT_Util.role) * thm) list }
fun add_components_of_typ (Type (s, Ts)) =
cons (Long_Name.base_name s) #> fold_rev add_components_of_typ Ts
| add_components_of_typ (TFree (s, _)) = cons (perhaps (try (unprefix "'")) s)
| add_components_of_typ _ = I;
fun suggested_name_of_typ T = space_implode "_" (add_components_of_typ T []);
fun suggested_name_of_term (Const (s, _)) = Long_Name.base_name s
| suggested_name_of_term (Free (s, _)) = s
| suggested_name_of_term _ = Name.uu
val empty_tr_context = (Name.context, Typtab.empty, Termtab.empty)
val safe_suffix = "$"
fun add_typ T proper (cx as (names, typs, terms)) =
(case Typtab.lookup typs T of
SOME (name, _) => (name, cx)
| NONE =>
let
val sugg = Name.desymbolize (SOME true) (suggested_name_of_typ T) ^ safe_suffix
val (name, names') = Name.variant sugg names
val typs' = Typtab.update (T, (name, proper)) typs
in (name, (names', typs', terms)) end)
fun add_fun t sort (cx as (names, typs, terms)) =
(case Termtab.lookup terms t of
SOME (name, _) => (name, cx)
| NONE =>
let
val sugg = Name.desymbolize (SOME false) (suggested_name_of_term t) ^ safe_suffix
val (name, names') = Name.variant sugg names
val terms' = Termtab.update (t, (name, sort)) terms
in (name, (names', typs, terms')) end)
fun sign_of logic dtyps (_, typs, terms) = {
logic = logic,
sorts = Typtab.fold (fn (_, (n, true)) => cons n | _ => I) typs [],
dtyps = dtyps,
funcs = Termtab.fold (fn (_, (n, SOME ss)) => cons (n,ss) | _ => I) terms []}
fun replay_data_of ctxt ll_defs rules assms (_, typs, terms) =
let
fun add_typ (T, (n, _)) = Symtab.update (n, T)
val typs' = Typtab.fold add_typ typs Symtab.empty
fun add_fun (t, (n, _)) = Symtab.update (n, t)
val terms' = Termtab.fold add_fun terms Symtab.empty
in
{context = ctxt, typs = typs', terms = terms', ll_defs = ll_defs, rewrite_rules = rules,
assms = assms}
end
fun collect_co_datatypes fp_kinds (tr_context, ctxt) ts =
let
val (fp_decls, ctxt') =
([], ctxt)
|> fold (Term.fold_types (SMT_Datatypes.add_decls fp_kinds) o snd) ts
|>> flat
fun is_decl_typ T = exists (equal T o fst o snd) fp_decls
fun add_typ' T proper =
(case SMT_Builtin.dest_builtin_typ ctxt' T of
SOME (n, Ts) => pair n
| NONE => add_typ T proper)
fun tr_select sel =
let val T = Term.range_type (Term.fastype_of sel)
in add_fun sel NONE ##>> add_typ' T (not (is_decl_typ T)) end
fun tr_constr (constr, selects) =
add_fun constr NONE ##>> fold_map tr_select selects
fun tr_typ (fp, (T, cases)) =
add_typ' T false ##>> fold_map tr_constr cases #>> pair fp
val (fp_decls', tr_context') = fold_map tr_typ fp_decls tr_context
fun add (constr, selects) =
Termtab.update (constr, length selects) #>
fold (Termtab.update o rpair 1) selects
val funcs = fold (fold add o snd o snd) fp_decls Termtab.empty
in ((funcs, fp_decls', tr_context', ctxt'), ts) end
local
fun eta f T t = Abs (Name.uu, T, f (Term.incr_boundvars 1 t $ Bound 0))
fun exp f T = eta f (Term.domain_type (Term.domain_type T))
fun exp2 T q =
let val U = Term.domain_type T
in Abs (Name.uu, U, q $ eta I (Term.domain_type U) (Bound 0)) end
fun expf k i T t =
let val Ts = drop i (fst (SMT_Util.dest_funT k T))
in
Term.incr_boundvars (length Ts) t
|> fold_rev (fn i => fn u => u $ Bound i) (0 upto length Ts - 1)
|> fold_rev (fn T => fn u => Abs (Name.uu, T, u)) Ts
end
in
fun eta_expand ctxt funcs =
let
fun exp_func t T ts =
(case Termtab.lookup funcs t of
SOME k => Term.list_comb (t, ts) |> k <> length ts ? expf k (length ts) T
| NONE => Term.list_comb (t, ts))
fun expand ((q as Const (\<^const_name>‹All›, _)) $ Abs a) = q $ abs_expand a
| expand ((q as Const (\<^const_name>‹All›, T)) $ t) = q $ exp expand T t
| expand (q as Const (\<^const_name>‹All›, T)) = exp2 T q
| expand ((q as Const (\<^const_name>‹Ex›, _)) $ Abs a) = q $ abs_expand a
| expand ((q as Const (\<^const_name>‹Ex›, T)) $ t) = q $ exp expand T t
| expand (q as Const (\<^const_name>‹Ex›, T)) = exp2 T q
| expand (Const (\<^const_name>‹Let›, T) $ t) =
let val U = Term.domain_type (Term.range_type T)
in Abs (Name.uu, U, expand (Bound 0 $ Term.incr_boundvars 1 t)) end
| expand (Const (\<^const_name>‹Let›, T)) =
let val U = Term.domain_type (Term.range_type T)
in Abs (Name.uu, Term.domain_type T, Abs (Name.uu, U, Bound 0 $ Bound 1)) end
| expand t =
(case Term.strip_comb t of
(Const (\<^const_name>‹Let›, _), t1 :: t2 :: ts) =>
Term.betapplys (Term.betapply (expand t2, expand t1), map expand ts)
| (u as Const (c as (_, T)), ts) =>
(case SMT_Builtin.dest_builtin ctxt c ts of
SOME (_, k, us, mk) =>
if k = length us then mk (map expand us)
else if k < length us then chop k (map expand us) |>> mk |> Term.list_comb
else expf k (length ts) T (mk (map expand us))
| NONE => exp_func u T (map expand ts))
| (u as Free (_, T), ts) => exp_func u T (map expand ts)
| (Abs a, ts) => Term.list_comb (abs_expand a, map expand ts)
| (u, ts) => Term.list_comb (u, map expand ts))
and abs_expand (n, T, t) = Abs (n, T, expand t)
in map (apsnd expand) end
end
local
fun add t i = apfst (Termtab.map_default (t, i) (Integer.min i))
fun add_type T = apsnd (Typtab.update (T, ()))
fun min_arities t =
(case Term.strip_comb t of
(u as Const _, ts) => add u (length ts) #> fold min_arities ts
| (u as Free _, ts) => add u (length ts) #> fold min_arities ts
| (Abs (_, T, u), ts) => (can dest_funT T ? add_type T) #> min_arities u #> fold min_arities ts
| (_, ts) => fold min_arities ts)
fun take_vars_into_account types t i =
let
fun find_min j (T as Type (\<^type_name>‹fun›, [_, T'])) =
if j = i orelse Typtab.defined types T then j else find_min (j + 1) T'
| find_min j _ = j
in find_min 0 (Term.type_of t) end
fun app u (t, T) = (Const (\<^const_name>‹fun_app›, T --> T) $ t $ u, Term.range_type T)
fun apply i t T ts =
let
val (ts1, ts2) = chop i ts
val (_, U) = SMT_Util.dest_funT i T
in fst (fold app ts2 (Term.list_comb (t, ts1), U)) end
in
fun intro_explicit_application ctxt funcs ts =
let
val explicit_application = Config.get ctxt SMT_Config.explicit_application
val get_arities =
(case explicit_application of
0 => min_arities
| 1 => min_arities
| 2 => K I
| n => error ("Illegal value for " ^ quote (Config.name_of SMT_Config.explicit_application) ^
": " ^ string_of_int n))
val (arities, types) = fold (get_arities o snd) ts (Termtab.empty, Typtab.empty)
val arities' = arities |> explicit_application = 1 ? Termtab.map (take_vars_into_account types)
fun app_func t T ts =
if is_some (Termtab.lookup funcs t) then Term.list_comb (t, ts)
else apply (the_default 0 (Termtab.lookup arities' t)) t T ts
fun in_list T f t = SMT_Util.mk_symb_list T (map f (SMT_Util.dest_symb_list t))
fun traverse Ts t =
(case Term.strip_comb t of
(q as Const (\<^const_name>‹All›, _), [Abs (x, T, u)]) =>
q $ Abs (x, T, in_trigger (T :: Ts) u)
| (q as Const (\<^const_name>‹Ex›, _), [Abs (x, T, u)]) =>
q $ Abs (x, T, in_trigger (T :: Ts) u)
| (q as Const (\<^const_name>‹Let›, _), [u1, u2 as Abs _]) =>
q $ traverse Ts u1 $ traverse Ts u2
| (u as Const (c as (_, T)), ts) =>
(case SMT_Builtin.dest_builtin ctxt c ts of
SOME (_, k, us, mk) =>
let
val (ts1, ts2) = chop k (map (traverse Ts) us)
val U = Term.strip_type T |>> snd o chop k |> (op --->)
in apply 0 (mk ts1) U ts2 end
| NONE => app_func u T (map (traverse Ts) ts))
| (u as Free (_, T), ts) => app_func u T (map (traverse Ts) ts)
| (u as Bound i, ts) => apply 0 u (nth Ts i) (map (traverse Ts) ts)
| (Abs (n, T, u), ts) => traverses Ts (Abs (n, T, traverse (T::Ts) u)) ts
| (u, ts) => traverses Ts u ts)
and in_trigger Ts ((c as \<^Const_>‹trigger›) $ p $ t) = c $ in_pats Ts p $ traverse Ts t
| in_trigger Ts t = traverse Ts t
and in_pats Ts ps =
in_list \<^typ>‹pattern symb_list› (in_list \<^typ>‹pattern› (in_pat Ts)) ps
and in_pat Ts ((p as \<^Const_>‹pat _›) $ t) = p $ traverse Ts t
| in_pat Ts ((p as \<^Const_>‹nopat _›) $ t) = p $ traverse Ts t
| in_pat _ t = raise TERM ("bad pattern", [t])
and traverses Ts t ts = Term.list_comb (t, map (traverse Ts) ts)
in map (apsnd (traverse [])) ts end
val fun_app_eq = mk_meta_eq @{thm fun_app_def}
end
local
val is_quant = member (op =) [\<^const_name>‹All›, \<^const_name>‹Ex›]
val fol_rules = [
Let_def,
@{lemma "P = True == P" by (rule eq_reflection) simp}]
exception BAD_PATTERN of unit
fun is_builtin_conn_or_pred ctxt c ts =
is_some (SMT_Builtin.dest_builtin_conn ctxt c ts) orelse
is_some (SMT_Builtin.dest_builtin_pred ctxt c ts)
in
fun folify ctxt =
let
fun in_list T f t = SMT_Util.mk_symb_list T (map_filter f (SMT_Util.dest_symb_list t))
fun in_term pat t =
(case Term.strip_comb t of
(\<^Const_>‹True›, []) => t
| (\<^Const_>‹False›, []) => t
| (u as \<^Const_>‹If _›, [t1, t2, t3]) =>
if pat then raise BAD_PATTERN () else u $ in_form t1 $ in_term pat t2 $ in_term pat t3
| (Const (c as (n, _)), ts) =>
if is_builtin_conn_or_pred ctxt c ts orelse is_quant n then
if pat then raise BAD_PATTERN () else in_form t
else
Term.list_comb (Const c, map (in_term pat) ts)
| (Free c, ts) => Term.list_comb (Free c, map (in_term pat) ts)
| _ => t)
and in_pat ((p as Const (\<^const_name>‹pat›, _)) $ t) =
p $ in_term true t
| in_pat ((p as Const (\<^const_name>‹nopat›, _)) $ t) =
p $ in_term true t
| in_pat t = raise TERM ("bad pattern", [t])
and in_pats ps =
in_list \<^typ>‹pattern symb_list› (SOME o in_list \<^typ>‹pattern› (try in_pat)) ps
and in_trigger ((c as \<^Const_>‹trigger›) $ p $ t) = c $ in_pats p $ in_form t
| in_trigger t = in_form t
and in_form t =
(case Term.strip_comb t of
(q as Const (qn, _), [Abs (n, T, u)]) =>
if is_quant qn then q $ Abs (n, T, in_trigger u)
else in_term false t
| (Const c, ts) =>
(case SMT_Builtin.dest_builtin_conn ctxt c ts of
SOME (_, _, us, mk) => mk (map in_form us)
| NONE =>
(case SMT_Builtin.dest_builtin_pred ctxt c ts of
SOME (_, _, us, mk) => mk (map (in_term false) us)
| NONE => in_term false t))
| _ => in_term false t)
in
map (apsnd in_form) #>
pair (fol_rules, I)
end
end
val quantifier = (fn
\<^const_name>‹All› => SOME SForall
| \<^const_name>‹Ex› => SOME SExists
| _ => NONE)
fun group_quant qname Ts (t as Const (q, _) $ Abs (_, T, u)) =
if q = qname then group_quant qname (T :: Ts) u else (Ts, t)
| group_quant _ Ts t = (Ts, t)
fun dest_pat (Const (\<^const_name>‹pat›, _) $ t) = (t, true)
| dest_pat (Const (\<^const_name>‹nopat›, _) $ t) = (t, false)
| dest_pat t = raise TERM ("bad pattern", [t])
fun dest_pats [] = I
| dest_pats ts =
(case map dest_pat ts |> split_list ||> distinct (op =) of
(ps, [true]) => cons (SPat ps)
| (ps, [false]) => cons (SNoPat ps)
| _ => raise TERM ("bad multi-pattern", ts))
fun dest_trigger \<^Const_>‹trigger for tl t› =
(rev (fold (dest_pats o SMT_Util.dest_symb_list) (SMT_Util.dest_symb_list tl) []), t)
| dest_trigger t = ([], t)
fun dest_quant qn T t = quantifier qn |> Option.map (fn q =>
let
val (Ts, u) = group_quant qn [T] t
val (ps, p) = dest_trigger u
in (q, rev Ts, ps, p) end)
fun fold_map_pat f (SPat ts) = fold_map f ts #>> SPat
| fold_map_pat f (SNoPat ts) = fold_map f ts #>> SNoPat
fun intermediate logic dtyps builtin ctxt ts trx =
let
fun transT (T as TFree _) = add_typ T true
| transT (T as TVar _) = (fn _ => raise TYPE ("bad SMT type", [T], []))
| transT (T as Type _) =
(case SMT_Builtin.dest_builtin_typ ctxt T of
SOME (n, []) => pair n
| SOME (n, Ts) =>
fold_map transT Ts
#>> (fn ns => enclose "(" ")" (space_implode " " (n :: ns)))
| NONE => add_typ T true)
fun trans t =
(case Term.strip_comb t of
(Const (qn, _), [Abs (_, T, t1)]) =>
(case dest_quant qn T t1 of
SOME (q, Ts, ps, b) =>
fold_map transT Ts ##>> fold_map (fold_map_pat trans) ps ##>>
trans b #>> (fn ((Ts', ps'), b') => SQua (q, Ts', ps', b'))
| NONE => raise TERM ("unsupported quantifier", [t]))
| (u as Const (c as (_, T)), ts) =>
(case builtin ctxt c ts of
SOME (n, _, us, _) => fold_map trans us #>> curry SConst n
| NONE => trans_applied_fun u T ts)
| (u as Free (_, T), ts) => trans_applied_fun u T ts
| (Bound i, ts) => pair i ##>> fold_map trans ts #>> SVar
| _ => raise TERM ("bad SMT term", [t]))
and trans_applied_fun t T ts =
let val (Us, U) = SMT_Util.dest_funT (length ts) T
in
fold_map transT Us ##>> transT U #-> (fn Up =>
add_fun t (SOME Up) ##>> fold_map trans ts #>> SConst)
end
val (us, trx') = fold_map (fn (role, t) => apfst (pair role) o trans t) ts trx
in ((sign_of (logic ts) dtyps trx', us), trx') end
structure Configs = Generic_Data
(
type T = (Proof.context -> config) SMT_Util.dict
val empty = []
fun merge data = SMT_Util.dict_merge fst data
)
fun add_config (cs, cfg) = Configs.map (SMT_Util.dict_update (cs, cfg))
fun get_config ctxt =
let val cs = SMT_Config.solver_class_of ctxt
in
(case SMT_Util.dict_get (Configs.get (Context.Proof ctxt)) cs of
SOME cfg => cfg ctxt
| NONE => error ("SMT: no translation configuration found " ^
"for solver class " ^ quote (SMT_Util.string_of_class cs)))
end
fun translate ctxt prover smt_options comments (ithms : ((int * SMT_Util.role) * thm) list) =
let
val {order, logic, fp_kinds, serialize} = get_config ctxt
fun no_dtyps (tr_context, ctxt) ts =
((Termtab.empty, [], tr_context, ctxt), ts)
val ts1 = map (SMT_Util.map_prod snd (Envir.beta_eta_contract o SMT_Util.prop_of)) ithms
val ((funcs, dtyps, tr_context, ctxt1), ts2) =
((empty_tr_context, ctxt), ts1)
|-> (if null fp_kinds then no_dtyps else collect_co_datatypes fp_kinds)
fun is_binder (Const (\<^const_name>‹Let›, _) $ _) = true
| is_binder t = Lambda_Lifting.is_quantifier t
fun mk_trigger ((q as Const (\<^const_name>‹All›, _)) $ Abs (n, T, t)) =
q $ Abs (n, T, mk_trigger t)
| mk_trigger (eq as (Const (\<^const_name>‹HOL.eq›, T) $ lhs $ _)) =
Term.domain_type T --> \<^typ>‹pattern›
|> (fn T => Const (\<^const_name>‹pat›, T) $ lhs)
|> SMT_Util.mk_symb_list \<^typ>‹pattern› o single
|> SMT_Util.mk_symb_list \<^typ>‹pattern symb_list› o single
|> (fn t => \<^Const>‹trigger for t eq›)
| mk_trigger t = t
val (ctxt2, (ts3, ll_defs)) =
ts2
|> eta_expand ctxt1 funcs
|> rpair ctxt1
|-> Lambda_Lifting.lift_lambdas' NONE is_binder
|-> (fn (ts', ll_defs) => fn ctxt' =>
let
val ts'' = map (pair SMT_Util.Axiom o mk_trigger) ll_defs @ ts'
|> order = SMT_Util.First_Order ? intro_explicit_application ctxt' funcs
in
(ctxt', (ts'', ll_defs))
end)
val ((rewrite_rules, builtin), ts4) = folify ctxt2 ts3
|>> order = SMT_Util.First_Order ? apfst (cons fun_app_eq)
in
(ts4, tr_context)
|-> intermediate (logic prover o map snd) dtyps (builtin SMT_Builtin.dest_builtin) ctxt2
|>> uncurry (serialize smt_options comments)
||> replay_data_of ctxt2 ll_defs rewrite_rules ithms
end
end;