Theory MemoryImplementation
section ‹RPC-Memory example: Memory implementation›
theory MemoryImplementation
imports Memory RPC MemClerk
begin
datatype histState = histA | histB
type_synonym histType = "(PrIds ⇒ histState) stfun"
consts
memCh :: "memChType"
mm :: "memType"
crCh :: "rpcSndChType"
rmCh :: "rpcRcvChType"
rst :: "rpcStType"
cst :: "mClkStType"
ires :: "resType"
definition
MVOKBARF :: "Vals ⇒ bool"
where "MVOKBARF v ⟷ (v ∈ MemVal) ∨ (v = OK) ∨ (v = BadArg) ∨ (v = RPCFailure)"
definition
MVOKBA :: "Vals ⇒ bool"
where "MVOKBA v ⟷ (v ∈ MemVal) ∨ (v = OK) ∨ (v = BadArg)"
definition
MVNROKBA :: "Vals ⇒ bool"
where "MVNROKBA v ⟷ (v ∈ MemVal) ∨ (v = NotAResult) ∨ (v = OK) ∨ (v = BadArg)"
definition
e :: "PrIds => (bit * memOp) stfun"
where "e p = PRED (caller memCh!p)"
definition
c :: "PrIds ⇒ (mClkState * (bit * Vals) * (bit * rpcOp)) stfun"
where "c p = PRED (cst!p, rtrner memCh!p, caller crCh!p)"
definition
r :: "PrIds ⇒ (rpcState * (bit * Vals) * (bit * memOp)) stfun"
where "r p = PRED (rst!p, rtrner crCh!p, caller rmCh!p)"
definition
m :: "PrIds ⇒ ((bit * Vals) * Vals) stfun"
where "m p = PRED (rtrner rmCh!p, ires!p)"
definition
ENext :: "PrIds ⇒ action"
where "ENext p = ACT (∃l. #l ∈ #MemLoc ∧ Call memCh p #(read l))"
definition
HInit :: "histType ⇒ PrIds ⇒ stpred"
where "HInit rmhist p = PRED rmhist!p = #histA"
definition
HNext :: "histType ⇒ PrIds ⇒ action"
where "HNext rmhist p = ACT (rmhist!p)$ =
(if (MemReturn rmCh ires p ∨ RPCFail crCh rmCh rst p)
then #histB
else if (MClkReply memCh crCh cst p)
then #histA
else $(rmhist!p))"
definition
HistP :: "histType ⇒ PrIds ⇒ temporal"
where "HistP rmhist p = (TEMP Init HInit rmhist p
∧ □[HNext rmhist p]_(c p,r p,m p, rmhist!p))"
definition
Hist :: "histType ⇒ temporal"
where "Hist rmhist = TEMP (∀p. HistP rmhist p)"
definition
IPImp :: "PrIds ⇒ temporal"
where "IPImp p = (TEMP ( Init ¬Calling memCh p ∧ □[ENext p]_(e p)
∧ MClkIPSpec memCh crCh cst p
∧ RPCIPSpec crCh rmCh rst p
∧ RPSpec rmCh mm ires p
∧ (∀l. #l ∈ #MemLoc ⟶ MSpec rmCh mm ires l)))"
definition
ImpInit :: "PrIds ⇒ stpred"
where "ImpInit p = PRED ( ¬Calling memCh p
∧ MClkInit crCh cst p
∧ RPCInit rmCh rst p
∧ PInit ires p)"
definition
ImpNext :: "PrIds ⇒ action"
where "ImpNext p = (ACT [ENext p]_(e p)
∧ [MClkNext memCh crCh cst p]_(c p)
∧ [RPCNext crCh rmCh rst p]_(r p)
∧ [RNext rmCh mm ires p]_(m p))"
definition
ImpLive :: "PrIds ⇒ temporal"
where "ImpLive p = (TEMP WF(MClkFwd memCh crCh cst p)_(c p)
∧ SF(MClkReply memCh crCh cst p)_(c p)
∧ WF(RPCNext crCh rmCh rst p)_(r p)
∧ WF(RNext rmCh mm ires p)_(m p)
∧ WF(MemReturn rmCh ires p)_(m p))"
definition
Implementation :: "temporal"
where "Implementation = (TEMP ( (∀p. Init (¬Calling memCh p) ∧ □[ENext p]_(e p))
∧ MClkISpec memCh crCh cst
∧ RPCISpec crCh rmCh rst
∧ IRSpec rmCh mm ires))"
definition
S :: "histType ⇒ bool ⇒ bool ⇒ bool ⇒ mClkState ⇒ rpcState ⇒ histState ⇒ histState ⇒ PrIds ⇒ stpred"
where "S rmhist ecalling ccalling rcalling cs rs hs1 hs2 p = (PRED
Calling memCh p = #ecalling
∧ Calling crCh p = #ccalling
∧ (#ccalling ⟶ arg<crCh!p> = MClkRelayArg<arg<memCh!p>>)
∧ (¬ #ccalling ∧ cst!p = #clkB ⟶ MVOKBARF<res<crCh!p>>)
∧ Calling rmCh p = #rcalling
∧ (#rcalling ⟶ arg<rmCh!p> = RPCRelayArg<arg<crCh!p>>)
∧ (¬ #rcalling ⟶ ires!p = #NotAResult)
∧ (¬ #rcalling ∧ rst!p = #rpcB ⟶ MVOKBA<res<rmCh!p>>)
∧ cst!p = #cs
∧ rst!p = #rs
∧ (rmhist!p = #hs1 ∨ rmhist!p = #hs2)
∧ MVNROKBA<ires!p>)"
definition
S1 :: "histType ⇒ PrIds ⇒ stpred"
where "S1 rmhist p = S rmhist False False False clkA rpcA histA histA p"
definition
S2 :: "histType ⇒ PrIds ⇒ stpred"
where "S2 rmhist p = S rmhist True False False clkA rpcA histA histA p"
definition
S3 :: "histType ⇒ PrIds ⇒ stpred"
where "S3 rmhist p = S rmhist True True False clkB rpcA histA histB p"
definition
S4 :: "histType ⇒ PrIds ⇒ stpred"
where "S4 rmhist p = S rmhist True True True clkB rpcB histA histB p"
definition
S5 :: "histType ⇒ PrIds ⇒ stpred"
where "S5 rmhist p = S rmhist True True False clkB rpcB histB histB p"
definition
S6 :: "histType ⇒ PrIds ⇒ stpred"
where "S6 rmhist p = S rmhist True False False clkB rpcA histB histB p"
definition
ImpInv :: "histType ⇒ PrIds ⇒ stpred"
where "ImpInv rmhist p = (PRED (S1 rmhist p ∨ S2 rmhist p ∨ S3 rmhist p
∨ S4 rmhist p ∨ S5 rmhist p ∨ S6 rmhist p))"
definition
resbar :: "histType ⇒ resType"
where"resbar rmhist s p =
(if (S1 rmhist p s | S2 rmhist p s)
then ires s p
else if S3 rmhist p s
then if rmhist s p = histA
then ires s p else MemFailure
else if S4 rmhist p s
then if (rmhist s p = histB & ires s p = NotAResult)
then MemFailure else ires s p
else if S5 rmhist p s
then res (rmCh s p)
else if S6 rmhist p s
then if res (crCh s p) = RPCFailure
then MemFailure else res (crCh s p)
else NotAResult)"
axiomatization where
MI_base: "basevars (caller memCh!p,
(rtrner memCh!p, caller crCh!p, cst!p),
(rtrner crCh!p, caller rmCh!p, rst!p),
(mm!l, rtrner rmCh!p, ires!p))"
declare if_weak_cong [cong del]
ML ‹
val config_fast_solver = Attrib.setup_config_bool \<^binding>‹fast_solver› (K false);
val fast_solver = mk_solver "fast_solver" (fn ctxt =>
if Config.get ctxt config_fast_solver
then assume_tac ctxt ORELSE' (eresolve_tac ctxt [notE])
else K no_tac);
›
setup ‹map_theory_simpset (fn ctxt => ctxt addSSolver fast_solver)›
ML ‹val temp_elim = make_elim oo temp_use›
section "History variable"
lemma HistoryLemma: "⊢ Init(∀p. ImpInit p) ∧ □(∀p. ImpNext p)
⟶ (∃∃rmhist. Init(∀p. HInit rmhist p)
∧ □(∀p. [HNext rmhist p]_(c p, r p, m p, rmhist!p)))"
apply clarsimp
apply (rule historyI)
apply assumption+
apply (rule MI_base)
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HInit_def}]) [] [] 1›)
apply (erule fun_cong)
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HNext_def}])
[@{thm busy_squareI}] [] 1›)
apply (erule fun_cong)
done
lemma History: "⊢ Implementation ⟶ (∃∃rmhist. Hist rmhist)"
apply clarsimp
apply (rule HistoryLemma [temp_use, THEN eex_mono])
prefer 3
apply (force simp: Hist_def HistP_def Init_def all_box [try_rewrite]
split_box_conj [try_rewrite])
apply (auto simp: Implementation_def MClkISpec_def RPCISpec_def
IRSpec_def MClkIPSpec_def RPCIPSpec_def RPSpec_def ImpInit_def
Init_def ImpNext_def c_def r_def m_def all_box [temp_use] split_box_conj [temp_use])
done
section "The safety part"
lemma MVOKBAnotRF: "MVOKBA x ⟹ x ≠ RPCFailure"
apply (unfold MVOKBA_def)
apply auto
done
lemma MVOKBARFnotNR: "MVOKBARF x ⟹ x ≠ NotAResult"
apply (unfold MVOKBARF_def)
apply auto
done
lemma S2_excl: "⊢ S2 rmhist p ⟶ S2 rmhist p ∧ ¬S1 rmhist p"
by (auto simp: S_def S1_def S2_def)
lemma S3_excl: "⊢ S3 rmhist p ⟶ S3 rmhist p ∧ ¬S1 rmhist p ∧ ¬S2 rmhist p"
by (auto simp: S_def S1_def S2_def S3_def)
lemma S4_excl: "⊢ S4 rmhist p ⟶ S4 rmhist p ∧ ¬S1 rmhist p ∧ ¬S2 rmhist p ∧ ¬S3 rmhist p"
by (auto simp: S_def S1_def S2_def S3_def S4_def)
lemma S5_excl: "⊢ S5 rmhist p ⟶ S5 rmhist p ∧ ¬S1 rmhist p ∧ ¬S2 rmhist p
∧ ¬S3 rmhist p ∧ ¬S4 rmhist p"
by (auto simp: S_def S1_def S2_def S3_def S4_def S5_def)
lemma S6_excl: "⊢ S6 rmhist p ⟶ S6 rmhist p ∧ ¬S1 rmhist p ∧ ¬S2 rmhist p
∧ ¬S3 rmhist p ∧ ¬S4 rmhist p ∧ ¬S5 rmhist p"
by (auto simp: S_def S1_def S2_def S3_def S4_def S5_def S6_def)
lemma Envbusy: "⊢ $(Calling memCh p) ⟶ ¬ENext p"
by (auto simp: ENext_def ACall_def)
lemma S1Env: "⊢ ENext p ∧ $(S1 rmhist p) ∧ unchanged (c p, r p, m p, rmhist!p)
⟶ (S2 rmhist p)$"
by (force simp: ENext_def ACall_def c_def r_def m_def
caller_def rtrner_def MVNROKBA_def S_def S1_def S2_def Calling_def)
lemma S1ClerkUnch: "⊢ [MClkNext memCh crCh cst p]_(c p) ∧ $(S1 rmhist p) ⟶ unchanged (c p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] dest!: MClkidle [temp_use] simp: S_def S1_def)
lemma S1RPCUnch: "⊢ [RPCNext crCh rmCh rst p]_(r p) ∧ $(S1 rmhist p) ⟶ unchanged (r p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] dest!: RPCidle [temp_use] simp: S_def S1_def)
lemma S1MemUnch: "⊢ [RNext rmCh mm ires p]_(m p) ∧ $(S1 rmhist p) ⟶ unchanged (m p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] dest!: Memoryidle [temp_use] simp: S_def S1_def)
lemma S1Hist: "⊢ [HNext rmhist p]_(c p,r p,m p,rmhist!p) ∧ $(S1 rmhist p)
⟶ unchanged (rmhist!p)"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HNext_def}, @{thm S_def},
@{thm S1_def}, @{thm MemReturn_def}, @{thm RPCFail_def}, @{thm MClkReply_def},
@{thm AReturn_def}]) [] [temp_use \<^context> @{thm squareE}] 1›)
lemma S2EnvUnch: "⊢ [ENext p]_(e p) ∧ $(S2 rmhist p) ⟶ unchanged (e p)"
by (auto dest!: Envbusy [temp_use] simp: S_def S2_def)
lemma S2Clerk: "⊢ MClkNext memCh crCh cst p ∧ $(S2 rmhist p) ⟶ MClkFwd memCh crCh cst p"
by (auto simp: MClkNext_def MClkRetry_def MClkReply_def S_def S2_def)
lemma S2Forward: "⊢ $(S2 rmhist p) ∧ MClkFwd memCh crCh cst p
∧ unchanged (e p, r p, m p, rmhist!p)
⟶ (S3 rmhist p)$"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm MClkFwd_def},
@{thm ACall_def}, @{thm e_def}, @{thm r_def}, @{thm m_def}, @{thm caller_def},
@{thm rtrner_def}, @{thm S_def}, @{thm S2_def}, @{thm S3_def}, @{thm Calling_def}]) [] [] 1›)
lemma S2RPCUnch: "⊢ [RPCNext crCh rmCh rst p]_(r p) ∧ $(S2 rmhist p) ⟶ unchanged (r p)"
by (auto simp: S_def S2_def dest!: RPCidle [temp_use])
lemma S2MemUnch: "⊢ [RNext rmCh mm ires p]_(m p) ∧ $(S2 rmhist p) ⟶ unchanged (m p)"
by (auto simp: S_def S2_def dest!: Memoryidle [temp_use])
lemma S2Hist: "⊢ [HNext rmhist p]_(c p,r p,m p,rmhist!p) ∧ $(S2 rmhist p)
⟶ unchanged (rmhist!p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] simp: HNext_def MemReturn_def RPCFail_def
MClkReply_def AReturn_def S_def S2_def)
lemma S3EnvUnch: "⊢ [ENext p]_(e p) ∧ $(S3 rmhist p) ⟶ unchanged (e p)"
by (auto dest!: Envbusy [temp_use] simp: S_def S3_def)
lemma S3ClerkUnch: "⊢ [MClkNext memCh crCh cst p]_(c p) ∧ $(S3 rmhist p) ⟶ unchanged (c p)"
by (auto dest!: MClkbusy [temp_use] simp: square_def S_def S3_def)
lemma S3LegalRcvArg: "⊢ S3 rmhist p ⟶ IsLegalRcvArg<arg<crCh!p>>"
by (auto simp: IsLegalRcvArg_def MClkRelayArg_def S_def S3_def)
lemma S3RPC: "⊢ RPCNext crCh rmCh rst p ∧ $(S3 rmhist p)
⟶ RPCFwd crCh rmCh rst p ∨ RPCFail crCh rmCh rst p"
apply clarsimp
apply (frule S3LegalRcvArg [action_use])
apply (auto simp: RPCNext_def RPCReject_def RPCReply_def S_def S3_def)
done
lemma S3Forward: "⊢ RPCFwd crCh rmCh rst p ∧ HNext rmhist p ∧ $(S3 rmhist p)
∧ unchanged (e p, c p, m p)
⟶ (S4 rmhist p)$ ∧ unchanged (rmhist!p)"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm RPCFwd_def},
@{thm HNext_def}, @{thm MemReturn_def}, @{thm RPCFail_def},
@{thm MClkReply_def}, @{thm AReturn_def}, @{thm ACall_def}, @{thm e_def},
@{thm c_def}, @{thm m_def}, @{thm caller_def}, @{thm rtrner_def}, @{thm S_def},
@{thm S3_def}, @{thm S4_def}, @{thm Calling_def}]) [] [] 1›)
lemma S3Fail: "⊢ RPCFail crCh rmCh rst p ∧ $(S3 rmhist p) ∧ HNext rmhist p
∧ unchanged (e p, c p, m p)
⟶ (S6 rmhist p)$"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HNext_def},
@{thm RPCFail_def}, @{thm AReturn_def}, @{thm e_def}, @{thm c_def},
@{thm m_def}, @{thm caller_def}, @{thm rtrner_def}, @{thm MVOKBARF_def},
@{thm S_def}, @{thm S3_def}, @{thm S6_def}, @{thm Calling_def}]) [] [] 1›)
lemma S3MemUnch: "⊢ [RNext rmCh mm ires p]_(m p) ∧ $(S3 rmhist p) ⟶ unchanged (m p)"
by (auto simp: S_def S3_def dest!: Memoryidle [temp_use])
lemma S3Hist: "⊢ HNext rmhist p ∧ $(S3 rmhist p) ∧ unchanged (r p) ⟶ unchanged (rmhist!p)"
by (auto simp: HNext_def MemReturn_def RPCFail_def MClkReply_def
AReturn_def r_def rtrner_def S_def S3_def Calling_def)
lemma S4EnvUnch: "⊢ [ENext p]_(e p) ∧ $(S4 rmhist p) ⟶ unchanged (e p)"
by (auto simp: S_def S4_def dest!: Envbusy [temp_use])
lemma S4ClerkUnch: "⊢ [MClkNext memCh crCh cst p]_(c p) ∧ $(S4 rmhist p) ⟶ unchanged (c p)"
by (auto simp: S_def S4_def dest!: MClkbusy [temp_use])
lemma S4RPCUnch: "⊢ [RPCNext crCh rmCh rst p]_(r p) ∧ $(S4 rmhist p) ⟶ unchanged (r p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] dest!: RPCbusy [temp_use] simp: S_def S4_def)
lemma S4ReadInner: "⊢ ReadInner rmCh mm ires p l ∧ $(S4 rmhist p) ∧ unchanged (e p, c p, r p)
∧ HNext rmhist p ∧ $(MemInv mm l)
⟶ (S4 rmhist p)$ ∧ unchanged (rmhist!p)"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ReadInner_def},
@{thm GoodRead_def}, @{thm BadRead_def}, @{thm HNext_def}, @{thm MemReturn_def},
@{thm RPCFail_def}, @{thm MClkReply_def}, @{thm AReturn_def}, @{thm e_def},
@{thm c_def}, @{thm r_def}, @{thm rtrner_def}, @{thm caller_def},
@{thm MVNROKBA_def}, @{thm S_def}, @{thm S4_def}, @{thm RdRequest_def},
@{thm Calling_def}, @{thm MemInv_def}]) [] [] 1›)
lemma S4Read: "⊢ Read rmCh mm ires p ∧ $(S4 rmhist p) ∧ unchanged (e p, c p, r p)
∧ HNext rmhist p ∧ (∀l. $MemInv mm l)
⟶ (S4 rmhist p)$ ∧ unchanged (rmhist!p)"
by (auto simp: Read_def dest!: S4ReadInner [temp_use])
lemma S4WriteInner: "⊢ WriteInner rmCh mm ires p l v ∧ $(S4 rmhist p) ∧ unchanged (e p, c p, r p) ∧ HNext rmhist p
⟶ (S4 rmhist p)$ ∧ unchanged (rmhist!p)"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm WriteInner_def},
@{thm GoodWrite_def}, @{thm BadWrite_def}, @{thm HNext_def}, @{thm MemReturn_def},
@{thm RPCFail_def}, @{thm MClkReply_def}, @{thm AReturn_def}, @{thm e_def},
@{thm c_def}, @{thm r_def}, @{thm rtrner_def}, @{thm caller_def}, @{thm MVNROKBA_def},
@{thm S_def}, @{thm S4_def}, @{thm WrRequest_def}, @{thm Calling_def}]) [] [] 1›)
lemma S4Write: "⊢ Write rmCh mm ires p l ∧ $(S4 rmhist p) ∧ unchanged (e p, c p, r p)
∧ (HNext rmhist p)
⟶ (S4 rmhist p)$ ∧ unchanged (rmhist!p)"
by (auto simp: Write_def dest!: S4WriteInner [temp_use])
lemma WriteS4: "⊢ $ImpInv rmhist p ∧ Write rmCh mm ires p l ⟶ $S4 rmhist p"
by (auto simp: Write_def WriteInner_def ImpInv_def
WrRequest_def S_def S1_def S2_def S3_def S4_def S5_def S6_def)
lemma S4Return: "⊢ MemReturn rmCh ires p ∧ $S4 rmhist p ∧ unchanged (e p, c p, r p)
∧ HNext rmhist p
⟶ (S5 rmhist p)$"
by (auto simp: HNext_def MemReturn_def AReturn_def e_def c_def r_def
rtrner_def caller_def MVNROKBA_def MVOKBA_def S_def S4_def S5_def Calling_def)
lemma S4Hist: "⊢ HNext rmhist p ∧ $S4 rmhist p ∧ (m p)$ = $(m p) ⟶ (rmhist!p)$ = $(rmhist!p)"
by (auto simp: HNext_def MemReturn_def RPCFail_def MClkReply_def
AReturn_def m_def rtrner_def S_def S4_def Calling_def)
lemma S5EnvUnch: "⊢ [ENext p]_(e p) ∧ $(S5 rmhist p) ⟶ unchanged (e p)"
by (auto simp: S_def S5_def dest!: Envbusy [temp_use])
lemma S5ClerkUnch: "⊢ [MClkNext memCh crCh cst p]_(c p) ∧ $(S5 rmhist p) ⟶ unchanged (c p)"
by (auto simp: S_def S5_def dest!: MClkbusy [temp_use])
lemma S5RPC: "⊢ RPCNext crCh rmCh rst p ∧ $(S5 rmhist p)
⟶ RPCReply crCh rmCh rst p ∨ RPCFail crCh rmCh rst p"
by (auto simp: RPCNext_def RPCReject_def RPCFwd_def S_def S5_def)
lemma S5Reply: "⊢ RPCReply crCh rmCh rst p ∧ $(S5 rmhist p) ∧ unchanged (e p, c p, m p,rmhist!p)
⟶ (S6 rmhist p)$"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm RPCReply_def},
@{thm AReturn_def}, @{thm e_def}, @{thm c_def}, @{thm m_def}, @{thm MVOKBA_def},
@{thm MVOKBARF_def}, @{thm caller_def}, @{thm rtrner_def}, @{thm S_def},
@{thm S5_def}, @{thm S6_def}, @{thm Calling_def}]) [] [] 1›)
lemma S5Fail: "⊢ RPCFail crCh rmCh rst p ∧ $(S5 rmhist p) ∧ unchanged (e p, c p, m p,rmhist!p)
⟶ (S6 rmhist p)$"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm RPCFail_def},
@{thm AReturn_def}, @{thm e_def}, @{thm c_def}, @{thm m_def},
@{thm MVOKBARF_def}, @{thm caller_def}, @{thm rtrner_def},
@{thm S_def}, @{thm S5_def}, @{thm S6_def}, @{thm Calling_def}]) [] [] 1›)
lemma S5MemUnch: "⊢ [RNext rmCh mm ires p]_(m p) ∧ $(S5 rmhist p) ⟶ unchanged (m p)"
by (auto simp: S_def S5_def dest!: Memoryidle [temp_use])
lemma S5Hist: "⊢ [HNext rmhist p]_(c p, r p, m p, rmhist!p) ∧ $(S5 rmhist p)
⟶ (rmhist!p)$ = $(rmhist!p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] simp: HNext_def MemReturn_def RPCFail_def
MClkReply_def AReturn_def S_def S5_def)
lemma S6EnvUnch: "⊢ [ENext p]_(e p) ∧ $(S6 rmhist p) ⟶ unchanged (e p)"
by (auto simp: S_def S6_def dest!: Envbusy [temp_use])
lemma S6Clerk: "⊢ MClkNext memCh crCh cst p ∧ $(S6 rmhist p)
⟶ MClkRetry memCh crCh cst p ∨ MClkReply memCh crCh cst p"
by (auto simp: MClkNext_def MClkFwd_def S_def S6_def)
lemma S6Retry: "⊢ MClkRetry memCh crCh cst p ∧ HNext rmhist p ∧ $S6 rmhist p
∧ unchanged (e p,r p,m p)
⟶ (S3 rmhist p)$ ∧ unchanged (rmhist!p)"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HNext_def},
@{thm MClkReply_def}, @{thm MClkRetry_def}, @{thm ACall_def}, @{thm AReturn_def},
@{thm e_def}, @{thm r_def}, @{thm m_def}, @{thm caller_def}, @{thm rtrner_def},
@{thm S_def}, @{thm S6_def}, @{thm S3_def}, @{thm Calling_def}]) [] [] 1›)
lemma S6Reply: "⊢ MClkReply memCh crCh cst p ∧ HNext rmhist p ∧ $S6 rmhist p
∧ unchanged (e p,r p,m p)
⟶ (S1 rmhist p)$"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm HNext_def},
@{thm MemReturn_def}, @{thm RPCFail_def}, @{thm AReturn_def}, @{thm MClkReply_def},
@{thm e_def}, @{thm r_def}, @{thm m_def}, @{thm caller_def}, @{thm rtrner_def},
@{thm S_def}, @{thm S6_def}, @{thm S1_def}, @{thm Calling_def}]) [] [] 1›)
lemma S6RPCUnch: "⊢ [RPCNext crCh rmCh rst p]_(r p) ∧ $S6 rmhist p ⟶ unchanged (r p)"
by (auto simp: S_def S6_def dest!: RPCidle [temp_use])
lemma S6MemUnch: "⊢ [RNext rmCh mm ires p]_(m p) ∧ $(S6 rmhist p) ⟶ unchanged (m p)"
by (auto simp: S_def S6_def dest!: Memoryidle [temp_use])
lemma S6Hist: "⊢ HNext rmhist p ∧ $S6 rmhist p ∧ (c p)$ = $(c p) ⟶ (rmhist!p)$ = $(rmhist!p)"
by (auto simp: HNext_def MClkReply_def AReturn_def c_def rtrner_def S_def S6_def Calling_def)
section "Correctness of predicate-action diagram"
lemma Step1_1: "⊢ ImpInit p ∧ HInit rmhist p ⟶ S1 rmhist p"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] simp: MVNROKBA_def
MClkInit_def RPCInit_def PInit_def HInit_def ImpInit_def S_def S1_def)
lemma Step1_2_1: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p) ∧ $S1 rmhist p
⟶ (S2 rmhist p)$ ∧ ENext p ∧ unchanged (c p, r p, m p)"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>)
[@{thm S1ClerkUnch}, @{thm S1RPCUnch}, @{thm S1MemUnch}, @{thm S1Hist}]) 1›)
using [[fast_solver]]
apply (auto elim!: squareE [temp_use] intro!: S1Env [temp_use])
done
lemma Step1_2_2: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p) ∧ $S2 rmhist p
⟶ (S3 rmhist p)$ ∧ MClkFwd memCh crCh cst p
∧ unchanged (e p, r p, m p, rmhist!p)"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>)
[@{thm S2EnvUnch}, @{thm S2RPCUnch}, @{thm S2MemUnch}, @{thm S2Hist}]) 1›)
using [[fast_solver]]
apply (auto elim!: squareE [temp_use] intro!: S2Clerk [temp_use] S2Forward [temp_use])
done
lemma Step1_2_3: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p) ∧ $S3 rmhist p
⟶ ((S4 rmhist p)$ ∧ RPCFwd crCh rmCh rst p ∧ unchanged (e p, c p, m p, rmhist!p))
∨ ((S6 rmhist p)$ ∧ RPCFail crCh rmCh rst p ∧ unchanged (e p, c p, m p))"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>) [@{thm S3EnvUnch}, @{thm S3ClerkUnch}, @{thm S3MemUnch}]) 1›)
apply (tactic ‹action_simp_tac \<^context> []
(@{thm squareE} ::
map (temp_elim \<^context>) [@{thm S3RPC}, @{thm S3Forward}, @{thm S3Fail}]) 1›)
apply (auto dest!: S3Hist [temp_use])
done
lemma Step1_2_4: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p)
∧ $S4 rmhist p ∧ (∀l. $(MemInv mm l))
⟶ ((S4 rmhist p)$ ∧ Read rmCh mm ires p ∧ unchanged (e p, c p, r p, rmhist!p))
∨ ((S4 rmhist p)$ ∧ (∃l. Write rmCh mm ires p l) ∧ unchanged (e p, c p, r p, rmhist!p))
∨ ((S5 rmhist p)$ ∧ MemReturn rmCh ires p ∧ unchanged (e p, c p, r p))"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>) [@{thm S4EnvUnch}, @{thm S4ClerkUnch}, @{thm S4RPCUnch}]) 1›)
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm RNext_def}]) []
(@{thm squareE} ::
map (temp_elim \<^context>) [@{thm S4Read}, @{thm S4Write}, @{thm S4Return}]) 1›)
apply (auto dest!: S4Hist [temp_use])
done
lemma Step1_2_5: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p) ∧ $S5 rmhist p
⟶ ((S6 rmhist p)$ ∧ RPCReply crCh rmCh rst p ∧ unchanged (e p, c p, m p))
∨ ((S6 rmhist p)$ ∧ RPCFail crCh rmCh rst p ∧ unchanged (e p, c p, m p))"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>) [@{thm S5EnvUnch}, @{thm S5ClerkUnch}, @{thm S5MemUnch}, @{thm S5Hist}]) 1›)
apply (tactic ‹action_simp_tac \<^context> [] [@{thm squareE}, temp_elim \<^context> @{thm S5RPC}] 1›)
using [[fast_solver]]
apply (auto elim!: squareE [temp_use] dest!: S5Reply [temp_use] S5Fail [temp_use])
done
lemma Step1_2_6: "⊢ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ ImpNext p
∧ ¬unchanged (e p, c p, r p, m p, rmhist!p) ∧ $S6 rmhist p
⟶ ((S1 rmhist p)$ ∧ MClkReply memCh crCh cst p ∧ unchanged (e p, r p, m p))
∨ ((S3 rmhist p)$ ∧ MClkRetry memCh crCh cst p ∧ unchanged (e p,r p,m p,rmhist!p))"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ImpNext_def}]) []
(map (temp_elim \<^context>) [@{thm S6EnvUnch}, @{thm S6RPCUnch}, @{thm S6MemUnch}]) 1›)
apply (tactic ‹action_simp_tac \<^context> []
(@{thm squareE} :: map (temp_elim \<^context>) [@{thm S6Clerk}, @{thm S6Retry}, @{thm S6Reply}]) 1›)
apply (auto dest: S6Hist [temp_use])
done
section "Initialization (Step 1.3)"
lemma Step1_3: "⊢ S1 rmhist p ⟶ PInit (resbar rmhist) p"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm resbar_def},
@{thm PInit_def}, @{thm S_def}, @{thm S1_def}]) [] [] 1›)
section "Step simulation (Step 1.4)"
lemma Step1_4_1: "⊢ ENext p ∧ $S1 rmhist p ∧ (S2 rmhist p)$ ∧ unchanged (c p, r p, m p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p)"
using [[fast_solver]]
by (auto elim!: squareE [temp_use] simp: c_def r_def m_def resbar_def)
lemma Step1_4_2: "⊢ MClkFwd memCh crCh cst p ∧ $S2 rmhist p ∧ (S3 rmhist p)$
∧ unchanged (e p, r p, m p, rmhist!p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p)"
by (tactic ‹action_simp_tac
(\<^context> addsimps [@{thm MClkFwd_def}, @{thm e_def}, @{thm r_def}, @{thm m_def},
@{thm resbar_def}, @{thm S_def}, @{thm S2_def}, @{thm S3_def}]) [] [] 1›)
lemma Step1_4_3a: "⊢ RPCFwd crCh rmCh rst p ∧ $S3 rmhist p ∧ (S4 rmhist p)$
∧ unchanged (e p, c p, m p, rmhist!p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (drule S3_excl [temp_use] S4_excl [temp_use])+
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm e_def},
@{thm c_def}, @{thm m_def}, @{thm resbar_def}, @{thm S_def}, @{thm S3_def}]) [] [] 1›)
done
lemma Step1_4_3b: "⊢ RPCFail crCh rmCh rst p ∧ $S3 rmhist p ∧ (S6 rmhist p)$
∧ unchanged (e p, c p, m p)
⟶ MemFail memCh (resbar rmhist) p"
apply clarsimp
apply (drule S6_excl [temp_use])
apply (auto simp: RPCFail_def MemFail_def e_def c_def m_def resbar_def)
apply (force simp: S3_def S_def)
apply (auto simp: AReturn_def)
done
lemma Step1_4_4a1: "⊢ $S4 rmhist p ∧ (S4 rmhist p)$ ∧ ReadInner rmCh mm ires p l
∧ unchanged (e p, c p, r p, rmhist!p) ∧ $MemInv mm l
⟶ ReadInner memCh mm (resbar rmhist) p l"
apply clarsimp
apply (drule S4_excl [temp_use])+
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm ReadInner_def},
@{thm GoodRead_def}, @{thm BadRead_def}, @{thm e_def}, @{thm c_def}, @{thm m_def}]) [] [] 1›)
apply (auto simp: resbar_def)
apply (tactic ‹ALLGOALS (action_simp_tac
(\<^context> addsimps [@{thm RPCRelayArg_def}, @{thm MClkRelayArg_def},
@{thm S_def}, @{thm S4_def}, @{thm RdRequest_def}, @{thm MemInv_def}])
[] [@{thm impE}, @{thm MemValNotAResultE}])›)
done
lemma Step1_4_4a: "⊢ Read rmCh mm ires p ∧ $S4 rmhist p ∧ (S4 rmhist p)$
∧ unchanged (e p, c p, r p, rmhist!p) ∧ (∀l. $(MemInv mm l))
⟶ Read memCh mm (resbar rmhist) p"
by (force simp: Read_def elim!: Step1_4_4a1 [temp_use])
lemma Step1_4_4b1: "⊢ $S4 rmhist p ∧ (S4 rmhist p)$ ∧ WriteInner rmCh mm ires p l v
∧ unchanged (e p, c p, r p, rmhist!p)
⟶ WriteInner memCh mm (resbar rmhist) p l v"
apply clarsimp
apply (drule S4_excl [temp_use])+
apply (tactic ‹action_simp_tac (\<^context> addsimps
[@{thm WriteInner_def}, @{thm GoodWrite_def}, @{thm BadWrite_def}, @{thm e_def},
@{thm c_def}, @{thm m_def}]) [] [] 1›)
apply (auto simp: resbar_def)
apply (tactic ‹ALLGOALS (action_simp_tac (\<^context> addsimps
[@{thm RPCRelayArg_def}, @{thm MClkRelayArg_def}, @{thm S_def},
@{thm S4_def}, @{thm WrRequest_def}]) [] [])›)
done
lemma Step1_4_4b: "⊢ Write rmCh mm ires p l ∧ $S4 rmhist p ∧ (S4 rmhist p)$
∧ unchanged (e p, c p, r p, rmhist!p)
⟶ Write memCh mm (resbar rmhist) p l"
by (force simp: Write_def elim!: Step1_4_4b1 [temp_use])
lemma Step1_4_4c: "⊢ MemReturn rmCh ires p ∧ $S4 rmhist p ∧ (S5 rmhist p)$
∧ unchanged (e p, c p, r p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p)"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm e_def},
@{thm c_def}, @{thm r_def}, @{thm resbar_def}]) [] [] 1›)
apply (drule S4_excl [temp_use] S5_excl [temp_use])+
using [[fast_solver]]
apply (auto elim!: squareE [temp_use] simp: MemReturn_def AReturn_def)
done
lemma Step1_4_5a: "⊢ RPCReply crCh rmCh rst p ∧ $S5 rmhist p ∧ (S6 rmhist p)$
∧ unchanged (e p, c p, m p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (drule S5_excl [temp_use] S6_excl [temp_use])+
apply (auto simp: e_def c_def m_def resbar_def)
apply (auto simp: RPCReply_def AReturn_def S5_def S_def dest!: MVOKBAnotRF [temp_use])
done
lemma Step1_4_5b: "⊢ RPCFail crCh rmCh rst p ∧ $S5 rmhist p ∧ (S6 rmhist p)$
∧ unchanged (e p, c p, m p)
⟶ MemFail memCh (resbar rmhist) p"
apply clarsimp
apply (drule S6_excl [temp_use])
apply (auto simp: e_def c_def m_def RPCFail_def AReturn_def MemFail_def resbar_def)
apply (auto simp: S5_def S_def)
done
lemma Step1_4_6a: "⊢ MClkReply memCh crCh cst p ∧ $S6 rmhist p ∧ (S1 rmhist p)$
∧ unchanged (e p, r p, m p)
⟶ MemReturn memCh (resbar rmhist) p"
apply clarsimp
apply (drule S6_excl [temp_use])+
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm e_def},
@{thm r_def}, @{thm m_def}, @{thm MClkReply_def}, @{thm MemReturn_def},
@{thm AReturn_def}, @{thm resbar_def}]) [] [] 1›)
apply simp_all
apply (tactic ‹ALLGOALS (action_simp_tac (\<^context> addsimps
[@{thm MClkReplyVal_def}, @{thm S6_def}, @{thm S_def}]) [] [@{thm MVOKBARFnotNR}])›)
done
lemma Step1_4_6b: "⊢ MClkRetry memCh crCh cst p ∧ $S6 rmhist p ∧ (S3 rmhist p)$
∧ unchanged (e p, r p, m p, rmhist!p)
⟶ MemFail memCh (resbar rmhist) p"
apply clarsimp
apply (drule S3_excl [temp_use])+
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm e_def}, @{thm r_def},
@{thm m_def}, @{thm MClkRetry_def}, @{thm MemFail_def}, @{thm resbar_def}]) [] [] 1›)
apply (auto simp: S6_def S_def)
done
lemma S_lemma: "⊢ unchanged (e p, c p, r p, m p, rmhist!p)
⟶ unchanged (S rmhist ec cc rc cs rs hs1 hs2 p)"
by (auto simp: e_def c_def r_def m_def caller_def rtrner_def S_def Calling_def)
lemma Step1_4_7H: "⊢ unchanged (e p, c p, r p, m p, rmhist!p)
⟶ unchanged (rtrner memCh!p, S1 rmhist p, S2 rmhist p, S3 rmhist p,
S4 rmhist p, S5 rmhist p, S6 rmhist p)"
apply clarsimp
apply (rule conjI)
apply (force simp: c_def)
apply (force simp: S1_def S2_def S3_def S4_def S5_def S6_def intro!: S_lemma [temp_use])
done
lemma Step1_4_7: "⊢ unchanged (e p, c p, r p, m p, rmhist!p)
⟶ unchanged (rtrner memCh!p, resbar rmhist!p, S1 rmhist p, S2 rmhist p,
S3 rmhist p, S4 rmhist p, S5 rmhist p, S6 rmhist p)"
apply (rule actionI)
apply (unfold action_rews)
apply (rule impI)
apply (frule Step1_4_7H [temp_use])
apply (auto simp: e_def c_def r_def m_def rtrner_def resbar_def)
done
ML ‹
fun split_idle_tac ctxt =
SELECT_GOAL
(TRY (resolve_tac ctxt @{thms actionI} 1) THEN
Induct_Tacs.case_tac ctxt "(s,t) ⊨ unchanged (e p, c p, r p, m p, rmhist!p)" [] NONE 1 THEN
rewrite_goals_tac ctxt @{thms action_rews} THEN
forward_tac ctxt [temp_use ctxt @{thm Step1_4_7}] 1 THEN
asm_full_simp_tac ctxt 1);
›
method_setup split_idle = ‹
Method.sections (Simplifier.simp_modifiers @ Splitter.split_modifiers)
>> (K (SIMPLE_METHOD' o split_idle_tac))
›
lemma unchanged_safe: "⊢ (¬unchanged (e p, c p, r p, m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p))
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply (split_idle simp: square_def)
apply force
done
lemmas unchanged_safeI = impI [THEN unchanged_safe [action_use]]
lemma S1safe: "⊢ $S1 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (rule idle_squareI)
apply (auto dest!: Step1_2_1 [temp_use] Step1_4_1 [temp_use])
done
lemma S2safe: "⊢ $S2 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (rule idle_squareI)
apply (auto dest!: Step1_2_2 [temp_use] Step1_4_2 [temp_use])
done
lemma S3safe: "⊢ $S3 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (auto dest!: Step1_2_3 [temp_use])
apply (auto simp: square_def UNext_def dest!: Step1_4_3a [temp_use] Step1_4_3b [temp_use])
done
lemma S4safe: "⊢ $S4 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
∧ (∀l. $(MemInv mm l))
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (auto dest!: Step1_2_4 [temp_use])
apply (auto simp: square_def UNext_def RNext_def
dest!: Step1_4_4a [temp_use] Step1_4_4b [temp_use] Step1_4_4c [temp_use])
done
lemma S5safe: "⊢ $S5 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (auto dest!: Step1_2_5 [temp_use])
apply (auto simp: square_def UNext_def dest!: Step1_4_5a [temp_use] Step1_4_5b [temp_use])
done
lemma S6safe: "⊢ $S6 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ [UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
apply clarsimp
apply (rule unchanged_safeI)
apply (auto dest!: Step1_2_6 [temp_use])
apply (auto simp: square_def UNext_def RNext_def
dest!: Step1_4_6a [temp_use] Step1_4_6b [temp_use])
done
section "The liveness part"
lemma S1_successors: "⊢ $S1 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ (S1 rmhist p)$ ∨ (S2 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_1 [temp_use])
done
lemma S1_RNextdisabled: "⊢ S1 rmhist p ⟶
¬Enabled (<RNext memCh mm (resbar rmhist) p>_(rtrner memCh!p, resbar rmhist!p))"
apply (tactic ‹action_simp_tac (\<^context> addsimps [@{thm angle_def},
@{thm S_def}, @{thm S1_def}]) [notI] [@{thm enabledE}, temp_elim \<^context> @{thm Memoryidle}] 1›)
apply force
done
lemma S1_Returndisabled: "⊢ S1 rmhist p ⟶
¬Enabled (<MemReturn memCh (resbar rmhist) p>_(rtrner memCh!p, resbar rmhist!p))"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm angle_def}, @{thm MemReturn_def},
@{thm AReturn_def}, @{thm S_def}, @{thm S1_def}]) [notI] [@{thm enabledE}] 1›)
lemma RNext_fair: "⊢ □◇S1 rmhist p
⟶ WF(RNext memCh mm (resbar rmhist) p)_(rtrner memCh!p, resbar rmhist!p)"
by (auto simp: WF_alt [try_rewrite] intro!: S1_RNextdisabled [temp_use]
elim!: STL4E [temp_use] DmdImplE [temp_use])
lemma Return_fair: "⊢ □◇S1 rmhist p
⟶ WF(MemReturn memCh (resbar rmhist) p)_(rtrner memCh!p, resbar rmhist!p)"
by (auto simp: WF_alt [try_rewrite]
intro!: S1_Returndisabled [temp_use] elim!: STL4E [temp_use] DmdImplE [temp_use])
lemma S2_successors: "⊢ $S2 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ (S2 rmhist p)$ ∨ (S3 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_2 [temp_use])
done
lemma S2MClkFwd_successors: "⊢ ($S2 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ <MClkFwd memCh crCh cst p>_(c p)
⟶ (S3 rmhist p)$"
by (auto simp: angle_def dest!: Step1_2_2 [temp_use])
lemma S2MClkFwd_enabled: "⊢ $S2 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ $Enabled (<MClkFwd memCh crCh cst p>_(c p))"
apply (auto simp: c_def intro!: MClkFwd_ch_enabled [temp_use] MClkFwd_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (simp_all add: S_def S2_def)
done
lemma S2_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ WF(MClkFwd memCh crCh cst p)_(c p)
⟶ (S2 rmhist p ↝ S3 rmhist p)"
by (rule WF1 S2_successors S2MClkFwd_successors S2MClkFwd_enabled)+
lemma S3_successors: "⊢ $S3 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ (S3 rmhist p)$ ∨ (S4 rmhist p ∨ S6 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_3 [temp_use])
done
lemma S3RPC_successors: "⊢ ($S3 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ <RPCNext crCh rmCh rst p>_(r p)
⟶ (S4 rmhist p ∨ S6 rmhist p)$"
apply (auto simp: angle_def dest!: Step1_2_3 [temp_use])
done
lemma S3RPC_enabled: "⊢ $S3 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ $Enabled (<RPCNext crCh rmCh rst p>_(r p))"
apply (auto simp: r_def intro!: RPCFail_Next_enabled [temp_use] RPCFail_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (simp_all add: S_def S3_def)
done
lemma S3_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ WF(RPCNext crCh rmCh rst p)_(r p)
⟶ (S3 rmhist p ↝ S4 rmhist p ∨ S6 rmhist p)"
by (rule WF1 S3_successors S3RPC_successors S3RPC_enabled)+
lemma S4_successors: "⊢ $S4 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
∧ (∀l. $MemInv mm l)
⟶ (S4 rmhist p)$ ∨ (S5 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_4 [temp_use])
done
lemma S4a_successors: "⊢ $(S4 rmhist p ∧ ires!p = #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p,rmhist!p) ∧ (∀l. $MemInv mm l)
⟶ (S4 rmhist p ∧ ires!p = #NotAResult)$
∨ ((S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_4 [temp_use])
done
lemma S4aRNext_successors: "⊢ ($(S4 rmhist p ∧ ires!p = #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p,rmhist!p) ∧ (∀l. $MemInv mm l))
∧ <RNext rmCh mm ires p>_(m p)
⟶ ((S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p)$"
by (auto simp: angle_def
dest!: Step1_2_4 [temp_use] ReadResult [temp_use] WriteResult [temp_use])
lemma S4aRNext_enabled: "⊢ $(S4 rmhist p ∧ ires!p = #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ (∀l. $MemInv mm l)
⟶ $Enabled (<RNext rmCh mm ires p>_(m p))"
apply (auto simp: m_def intro!: RNext_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (simp add: S_def S4_def)
done
lemma S4a_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
∧ (∀l. $MemInv mm l)) ∧ WF(RNext rmCh mm ires p)_(m p)
⟶ (S4 rmhist p ∧ ires!p = #NotAResult
↝ (S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p)"
by (rule WF1 S4a_successors S4aRNext_successors S4aRNext_enabled)+
lemma S4b_successors: "⊢ $(S4 rmhist p ∧ ires!p ≠ #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ (∀l. $MemInv mm l)
⟶ (S4 rmhist p ∧ ires!p ≠ #NotAResult)$ ∨ (S5 rmhist p)$"
apply (split_idle simp: m_def)
apply (auto dest!: WriteResult [temp_use] Step1_2_4 [temp_use] ReadResult [temp_use])
done
lemma S4bReturn_successors: "⊢ ($(S4 rmhist p ∧ ires!p ≠ #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
∧ (∀l. $MemInv mm l)) ∧ <MemReturn rmCh ires p>_(m p)
⟶ (S5 rmhist p)$"
by (force simp: angle_def dest!: Step1_2_4 [temp_use] dest: ReturnNotReadWrite [temp_use])
lemma S4bReturn_enabled: "⊢ $(S4 rmhist p ∧ ires!p ≠ #NotAResult)
∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
∧ (∀l. $MemInv mm l)
⟶ $Enabled (<MemReturn rmCh ires p>_(m p))"
apply (auto simp: m_def intro!: MemReturn_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (simp add: S_def S4_def)
done
lemma S4b_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ (∀l. $MemInv mm l))
∧ WF(MemReturn rmCh ires p)_(m p)
⟶ (S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p)"
by (rule WF1 S4b_successors S4bReturn_successors S4bReturn_enabled)+
lemma S5_successors: "⊢ $S5 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ (S5 rmhist p)$ ∨ (S6 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_5 [temp_use])
done
lemma S5RPC_successors: "⊢ ($S5 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ <RPCNext crCh rmCh rst p>_(r p)
⟶ (S6 rmhist p)$"
by (auto simp: angle_def dest!: Step1_2_5 [temp_use])
lemma S5RPC_enabled: "⊢ $S5 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ $Enabled (<RPCNext crCh rmCh rst p>_(r p))"
apply (auto simp: r_def intro!: RPCFail_Next_enabled [temp_use] RPCFail_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (simp_all add: S_def S5_def)
done
lemma S5_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ WF(RPCNext crCh rmCh rst p)_(r p)
⟶ (S5 rmhist p ↝ S6 rmhist p)"
by (rule WF1 S5_successors S5RPC_successors S5RPC_enabled)+
lemma S6_successors: "⊢ $S6 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p)
⟶ (S1 rmhist p)$ ∨ (S3 rmhist p)$ ∨ (S6 rmhist p)$"
apply split_idle
apply (auto dest!: Step1_2_6 [temp_use])
done
lemma S6MClkReply_successors:
"⊢ ($S6 rmhist p ∧ ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p))
∧ <MClkReply memCh crCh cst p>_(c p)
⟶ (S1 rmhist p)$"
by (auto simp: angle_def dest!: Step1_2_6 [temp_use] MClkReplyNotRetry [temp_use])
lemma MClkReplyS6:
"⊢ $ImpInv rmhist p ∧ <MClkReply memCh crCh cst p>_(c p) ⟶ $S6 rmhist p"
by (tactic ‹action_simp_tac (\<^context> addsimps [@{thm angle_def},
@{thm MClkReply_def}, @{thm AReturn_def}, @{thm ImpInv_def}, @{thm S_def},
@{thm S1_def}, @{thm S2_def}, @{thm S3_def}, @{thm S4_def}, @{thm S5_def}]) [] [] 1›)
lemma S6MClkReply_enabled: "⊢ S6 rmhist p ⟶ Enabled (<MClkReply memCh crCh cst p>_(c p))"
apply (auto simp: c_def intro!: MClkReply_enabled [temp_use])
apply (cut_tac MI_base)
apply (blast dest: base_pair)
apply (tactic ‹ALLGOALS (action_simp_tac (\<^context>
addsimps [@{thm S_def}, @{thm S6_def}]) [] [])›)
done
lemma S6_live: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p,r p,m p, rmhist!p) ∧ $(ImpInv rmhist p))
∧ SF(MClkReply memCh crCh cst p)_(c p) ∧ □◇(S6 rmhist p)
⟶ □◇(S1 rmhist p)"
apply clarsimp
apply (subgoal_tac "sigma ⊨ □◇ (<MClkReply memCh crCh cst p>_ (c p))")
apply (erule InfiniteEnsures)
apply assumption
apply (tactic ‹action_simp_tac \<^context> []
(map (temp_elim \<^context>) [@{thm MClkReplyS6}, @{thm S6MClkReply_successors}]) 1›)
apply (auto simp: SF_def)
apply (erule contrapos_np)
apply (auto intro!: S6MClkReply_enabled [temp_use] elim!: STL4E [temp_use] DmdImplE [temp_use])
done
lemma S5S6LeadstoS6: "sigma ⊨ S5 rmhist p ↝ S6 rmhist p
⟹ sigma ⊨ (S5 rmhist p ∨ S6 rmhist p) ↝ S6 rmhist p"
by (auto intro!: LatticeDisjunctionIntro [temp_use] LatticeReflexivity [temp_use])
lemma S4bS5S6LeadstoS6: "⟦ sigma ⊨ S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p;
sigma ⊨ S5 rmhist p ↝ S6 rmhist p ⟧
⟹ sigma ⊨ (S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p ∨ S6 rmhist p
↝ S6 rmhist p"
by (auto intro!: LatticeDisjunctionIntro [temp_use]
S5S6LeadstoS6 [temp_use] intro: LatticeTransitivity [temp_use])
lemma S4S5S6LeadstoS6: "⟦ sigma ⊨ S4 rmhist p ∧ ires!p = #NotAResult
↝ (S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p;
sigma ⊨ S5 rmhist p ↝ S6 rmhist p ⟧
⟹ sigma ⊨ S4 rmhist p ∨ S5 rmhist p ∨ S6 rmhist p ↝ S6 rmhist p"
apply (subgoal_tac "sigma ⊨ (S4 rmhist p ∧ ires!p = #NotAResult) ∨
(S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p ∨ S6 rmhist p ↝ S6 rmhist p")
apply (erule_tac G = "PRED ((S4 rmhist p ∧ ires!p = #NotAResult) ∨
(S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p ∨ S6 rmhist p)" in
LatticeTransitivity [temp_use])
apply (force simp: Init_defs intro!: ImplLeadsto_gen [temp_use] necT [temp_use])
apply (rule LatticeDisjunctionIntro [temp_use])
apply (erule LatticeTransitivity [temp_use])
apply (erule LatticeTriangle2 [temp_use])
apply assumption
apply (auto intro!: S4bS5S6LeadstoS6 [temp_use])
done
lemma S3S4S5S6LeadstoS6: "⟦ sigma ⊨ S3 rmhist p ↝ S4 rmhist p ∨ S6 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p = #NotAResult
↝ (S4 rmhist p ∧ ires!p ≠ #NotAResult) ∨ S5 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p;
sigma ⊨ S5 rmhist p ↝ S6 rmhist p ⟧
⟹ sigma ⊨ S3 rmhist p ∨ S4 rmhist p ∨ S5 rmhist p ∨ S6 rmhist p ↝ S6 rmhist p"
apply (rule LatticeDisjunctionIntro [temp_use])
apply (erule LatticeTriangle2 [temp_use])
apply (rule S4S5S6LeadstoS6 [THEN LatticeTransitivity [temp_use]])
apply (auto intro!: S4S5S6LeadstoS6 [temp_use] necT [temp_use]
intro: ImplLeadsto_gen [temp_use] simp: Init_defs)
done
lemma S2S3S4S5S6LeadstoS6: "⟦ sigma ⊨ S2 rmhist p ↝ S3 rmhist p;
sigma ⊨ S3 rmhist p ↝ S4 rmhist p ∨ S6 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p = #NotAResult
↝ S4 rmhist p ∧ ires!p ≠ #NotAResult ∨ S5 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p;
sigma ⊨ S5 rmhist p ↝ S6 rmhist p ⟧
⟹ sigma ⊨ S2 rmhist p ∨ S3 rmhist p ∨ S4 rmhist p ∨ S5 rmhist p ∨ S6 rmhist p
↝ S6 rmhist p"
apply (rule LatticeDisjunctionIntro [temp_use])
apply (rule LatticeTransitivity [temp_use])
prefer 2 apply assumption
apply (rule S3S4S5S6LeadstoS6 [THEN LatticeTransitivity [temp_use]])
apply (auto intro!: S3S4S5S6LeadstoS6 [temp_use] necT [temp_use]
intro: ImplLeadsto_gen [temp_use] simp: Init_defs)
done
lemma NotS1LeadstoS6: "⟦ sigma ⊨ □ImpInv rmhist p;
sigma ⊨ S2 rmhist p ↝ S3 rmhist p;
sigma ⊨ S3 rmhist p ↝ S4 rmhist p ∨ S6 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p = #NotAResult
↝ S4 rmhist p ∧ ires!p ≠ #NotAResult ∨ S5 rmhist p;
sigma ⊨ S4 rmhist p ∧ ires!p ≠ #NotAResult ↝ S5 rmhist p;
sigma ⊨ S5 rmhist p ↝ S6 rmhist p ⟧
⟹ sigma ⊨ ¬S1 rmhist p ↝ S6 rmhist p"
apply (rule S2S3S4S5S6LeadstoS6 [THEN LatticeTransitivity [temp_use]])
apply assumption+
apply (erule INV_leadsto [temp_use])
apply (rule ImplLeadsto_gen [temp_use])
apply (rule necT [temp_use])
apply (auto simp: ImpInv_def Init_defs intro!: necT [temp_use])
done
lemma S1Infinite: "⟦ sigma ⊨ ¬S1 rmhist p ↝ S6 rmhist p;
sigma ⊨ □◇S6 rmhist p ⟶ □◇S1 rmhist p ⟧
⟹ sigma ⊨ □◇S1 rmhist p"
apply (rule classical)
apply (tactic ‹asm_lr_simp_tac (\<^context> addsimps
[temp_use \<^context> @{thm NotBox}, temp_rewrite \<^context> @{thm NotDmd}]) 1›)
apply (auto elim!: leadsto_infinite [temp_use] mp dest!: DBImplBD [temp_use])
done
section "Refinement proof (step 1.5)"
lemma Step1_5_1a: "⊢ IPImp p ⟶ (∀l. □$MemInv mm l)"
by (auto simp: IPImp_def box_stp_act [temp_use] intro!: MemoryInvariantAll [temp_use])
lemma Step1_5_1b: "⊢ Init(ImpInit p ∧ HInit rmhist p) ∧ □(ImpNext p)
∧ □[HNext rmhist p]_(c p, r p, m p, rmhist!p) ∧ □(∀l. $MemInv mm l)
⟶ □ImpInv rmhist p"
apply invariant
apply (auto simp: Init_def ImpInv_def box_stp_act [temp_use]
dest!: Step1_1 [temp_use] dest: S1_successors [temp_use] S2_successors [temp_use]
S3_successors [temp_use] S4_successors [temp_use] S5_successors [temp_use]
S6_successors [temp_use])
done
lemma Step1_5_2a: "⊢ Init(ImpInit p ∧ HInit rmhist p) ⟶ Init(PInit (resbar rmhist) p)"
by (auto simp: Init_def intro!: Step1_1 [temp_use] Step1_3 [temp_use])
lemma Step1_5_2b: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p)
∧ $ImpInv rmhist p ∧ (∀l. $MemInv mm l))
⟶ □[UNext memCh mm (resbar rmhist) p]_(rtrner memCh!p, resbar rmhist!p)"
by (auto simp: ImpInv_def elim!: STL4E [temp_use]
dest!: S1safe [temp_use] S2safe [temp_use] S3safe [temp_use] S4safe [temp_use]
S5safe [temp_use] S6safe [temp_use])
lemma GoodImpl: "⊢ IPImp p ∧ HistP rmhist p
⟶ Init(ImpInit p ∧ HInit rmhist p)
∧ □(ImpNext p ∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ □(∀l. $MemInv mm l) ∧ □($ImpInv rmhist p)
∧ ImpLive p"
apply clarsimp
apply (subgoal_tac "sigma ⊨ Init (ImpInit p ∧ HInit rmhist p) ∧ □ (ImpNext p) ∧
□[HNext rmhist p]_ (c p, r p, m p, rmhist!p) ∧ □ (∀l. $MemInv mm l)")
apply (auto simp: split_box_conj [try_rewrite] box_stp_act [try_rewrite]
dest!: Step1_5_1b [temp_use])
apply (force simp: IPImp_def MClkIPSpec_def RPCIPSpec_def RPSpec_def
ImpLive_def c_def r_def m_def)
apply (force simp: IPImp_def MClkIPSpec_def RPCIPSpec_def RPSpec_def
HistP_def Init_def ImpInit_def)
apply (force simp: IPImp_def MClkIPSpec_def RPCIPSpec_def RPSpec_def
ImpNext_def c_def r_def m_def split_box_conj [temp_use])
apply (force simp: HistP_def)
apply (force simp: allT [temp_use] dest!: Step1_5_1a [temp_use])
done
lemma Step1_5_3a: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ □(∀l. $MemInv mm l)
∧ □($ImpInv rmhist p) ∧ ImpLive p
⟶ □◇S1 rmhist p"
apply (clarsimp simp: ImpLive_def)
apply (rule S1Infinite)
apply (force simp: split_box_conj [try_rewrite] box_stp_act [try_rewrite]
intro!: NotS1LeadstoS6 [temp_use] S2_live [temp_use] S3_live [temp_use]
S4a_live [temp_use] S4b_live [temp_use] S5_live [temp_use])
apply (auto simp: split_box_conj [temp_use] intro!: S6_live [temp_use])
done
lemma Step1_5_3b: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ □(∀l. $MemInv mm l) ∧ □($ImpInv rmhist p) ∧ ImpLive p
⟶ WF(RNext memCh mm (resbar rmhist) p)_(rtrner memCh!p, resbar rmhist!p)"
by (auto intro!: RNext_fair [temp_use] Step1_5_3a [temp_use])
lemma Step1_5_3c: "⊢ □(ImpNext p ∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ □(∀l. $MemInv mm l) ∧ □($ImpInv rmhist p) ∧ ImpLive p
⟶ WF(MemReturn memCh (resbar rmhist) p)_(rtrner memCh!p, resbar rmhist!p)"
by (auto intro!: Return_fair [temp_use] Step1_5_3a [temp_use])
lemma Step1: "⊢ IPImp p ∧ HistP rmhist p ⟶ UPSpec memCh mm (resbar rmhist) p"
by (auto simp: UPSpec_def split_box_conj [temp_use]
dest!: GoodImpl [temp_use] intro!: Step1_5_2a [temp_use] Step1_5_2b [temp_use]
Step1_5_3b [temp_use] Step1_5_3c [temp_use])
section "Step 2"
lemma Step2_2a: "⊢ Write rmCh mm ires p l ∧ ImpNext p
∧ [HNext rmhist p]_(c p, r p, m p, rmhist!p)
∧ $ImpInv rmhist p
⟶ (S4 rmhist p)$ ∧ unchanged (e p, c p, r p, rmhist!p)"
apply clarsimp
apply (drule WriteS4 [action_use])
apply assumption
apply split_idle
apply (auto simp: ImpNext_def dest!: S4EnvUnch [temp_use] S4ClerkUnch [temp_use]
S4RPCUnch [temp_use])
apply (auto simp: square_def dest: S4Write [temp_use])
done
lemma Step2_2: "⊢ (∀p. ImpNext p)
∧ (∀p. [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ (∀p. $ImpInv rmhist p)
∧ [∃q. Write rmCh mm ires q l]_(mm!l)
⟶ [∃q. Write memCh mm (resbar rmhist) q l]_(mm!l)"
apply (auto intro!: squareCI elim!: squareE)
apply (assumption | rule exI Step1_4_4b [action_use])+
apply (force intro!: WriteS4 [temp_use])
apply (auto dest!: Step2_2a [temp_use])
done
lemma Step2_lemma: "⊢ □( (∀p. ImpNext p)
∧ (∀p. [HNext rmhist p]_(c p, r p, m p, rmhist!p))
∧ (∀p. $ImpInv rmhist p)
∧ [∃q. Write rmCh mm ires q l]_(mm!l))
⟶ □[∃q. Write memCh mm (resbar rmhist) q l]_(mm!l)"
by (force elim!: STL4E [temp_use] dest!: Step2_2 [temp_use])
lemma Step2: "⊢ #l ∈ #MemLoc ∧ (∀p. IPImp p ∧ HistP rmhist p)
⟶ MSpec memCh mm (resbar rmhist) l"
apply (auto simp: MSpec_def)
apply (force simp: IPImp_def MSpec_def)
apply (auto intro!: Step2_lemma [temp_use] simp: split_box_conj [temp_use] all_box [temp_use])
prefer 4
apply (force simp: IPImp_def MSpec_def)
apply (auto simp: split_box_conj [temp_use] elim!: allE dest!: GoodImpl [temp_use])
done
section "Memory implementation"
lemma Impl_IUSpec: "⊢ Implementation ∧ Hist rmhist ⟶ IUSpec memCh mm (resbar rmhist)"
by (auto simp: IUSpec_def Implementation_def IPImp_def MClkISpec_def
RPCISpec_def IRSpec_def Hist_def intro!: Step1 [temp_use] Step2 [temp_use])
lemma Implementation: "⊢ Implementation ⟶ USpec memCh"
apply clarsimp
apply (frule History [temp_use])
apply (auto simp: USpec_def intro: eexI [temp_use] Impl_IUSpec [temp_use]
MI_base [temp_use] elim!: eexE)
done
end