Theory Init
theory Init
imports Action
begin
typedecl behavior
instance behavior :: world ..
type_synonym temporal = "behavior form"
consts
first_world :: "behavior ⇒ ('w::world)"
st1 :: "behavior ⇒ state"
st2 :: "behavior ⇒ state"
definition Initial :: "('w::world ⇒ bool) ⇒ temporal"
where Init_def: "Initial F sigma = F (first_world sigma)"
syntax
"_TEMP" :: "lift ⇒ 'a" ("(TEMP _)")
"_Init" :: "lift ⇒ lift" ("(Init _)"[40] 50)
translations
"TEMP F" => "(F::behavior ⇒ _)"
"_Init" == "CONST Initial"
"sigma ⊨ Init F" <= "_Init F sigma"
overloading
fw_temp ≡ "first_world :: behavior ⇒ behavior"
fw_stp ≡ "first_world :: behavior ⇒ state"
fw_act ≡ "first_world :: behavior ⇒ state × state"
begin
definition "first_world == λsigma. sigma"
definition "first_world == st1"
definition "first_world == λsigma. (st1 sigma, st2 sigma)"
end
lemma const_simps [int_rewrite, simp]:
"⊢ (Init #True) = #True"
"⊢ (Init #False) = #False"
by (auto simp: Init_def)
lemma Init_simps1 [int_rewrite]:
"⋀F. ⊢ (Init ¬F) = (¬ Init F)"
"⊢ (Init (P ⟶ Q)) = (Init P ⟶ Init Q)"
"⊢ (Init (P ∧ Q)) = (Init P ∧ Init Q)"
"⊢ (Init (P ∨ Q)) = (Init P ∨ Init Q)"
"⊢ (Init (P = Q)) = ((Init P) = (Init Q))"
"⊢ (Init (∀x. F x)) = (∀x. (Init F x))"
"⊢ (Init (∃x. F x)) = (∃x. (Init F x))"
"⊢ (Init (∃!x. F x)) = (∃!x. (Init F x))"
by (auto simp: Init_def)
lemma Init_stp_act: "⊢ (Init $P) = (Init P)"
by (auto simp add: Init_def fw_act_def fw_stp_def)
lemmas Init_simps2 = Init_stp_act [int_rewrite] Init_simps1
lemmas Init_stp_act_rev = Init_stp_act [int_rewrite, symmetric]
lemma Init_temp: "⊢ (Init F) = F"
by (auto simp add: Init_def fw_temp_def)
lemmas Init_simps = Init_temp [int_rewrite] Init_simps2
lemma Init_stp: "(sigma ⊨ Init P) = P (st1 sigma)"
by (simp add: Init_def fw_stp_def)
lemma Init_act: "(sigma ⊨ Init A) = A (st1 sigma, st2 sigma)"
by (simp add: Init_def fw_act_def)
lemmas Init_defs = Init_stp Init_act Init_temp [int_use]
end