Theory Intensional
section ‹A framework for "intensional" (possible-world based) logics
on top of HOL, with lifting of constants and functions›
theory Intensional
imports Main
begin
class world
type_synonym ('w,'a) expr = "'w ⇒ 'a"
type_synonym 'w form = "('w, bool) expr"
definition Valid :: "('w::world) form ⇒ bool"
where "Valid A ≡ ∀w. A w"
definition const :: "'a ⇒ ('w::world, 'a) expr"
where unl_con: "const c w ≡ c"
definition lift :: "['a ⇒ 'b, ('w::world, 'a) expr] ⇒ ('w,'b) expr"
where unl_lift: "lift f x w ≡ f (x w)"
definition lift2 :: "['a ⇒ 'b ⇒ 'c, ('w::world,'a) expr, ('w,'b) expr] ⇒ ('w,'c) expr"
where unl_lift2: "lift2 f x y w ≡ f (x w) (y w)"
definition lift3 :: "['a ⇒ 'b ⇒ 'c ⇒ 'd, ('w::world,'a) expr, ('w,'b) expr, ('w,'c) expr] ⇒ ('w,'d) expr"
where unl_lift3: "lift3 f x y z w ≡ f (x w) (y w) (z w)"
definition RAll :: "('a ⇒ ('w::world) form) ⇒ 'w form" (binder "Rall " 10)
where unl_Rall: "(Rall x. A x) w ≡ ∀x. A x w"
definition REx :: "('a ⇒ ('w::world) form) ⇒ 'w form" (binder "Rex " 10)
where unl_Rex: "(Rex x. A x) w ≡ ∃x. A x w"
definition REx1 :: "('a ⇒ ('w::world) form) ⇒ 'w form" (binder "Rex! " 10)
where unl_Rex1: "(Rex! x. A x) w ≡ ∃!x. A x w"
nonterminal lift and liftargs
syntax
"" :: "id ⇒ lift" ("_")
"" :: "longid ⇒ lift" ("_")
"" :: "var ⇒ lift" ("_")
"_applC" :: "[lift, cargs] ⇒ lift" ("(1_/ _)" [1000, 1000] 999)
"" :: "lift ⇒ lift" ("'(_')")
"_lambda" :: "[idts, 'a] ⇒ lift" ("(3λ_./ _)" [0, 3] 3)
"_constrain" :: "[lift, type] ⇒ lift" ("(_::_)" [4, 0] 3)
"" :: "lift ⇒ liftargs" ("_")
"_liftargs" :: "[lift, liftargs] ⇒ liftargs" ("_,/ _")
"_Valid" :: "lift ⇒ bool" ("(⊢ _)" 5)
"_holdsAt" :: "['a, lift] ⇒ bool" ("(_ ⊨ _)" [100,10] 10)
"_LIFT" :: "lift ⇒ 'a" ("LIFT _")
"_const" :: "'a ⇒ lift" ("(#_)" [1000] 999)
"_lift" :: "['a, lift] ⇒ lift" ("(_<_>)" [1000] 999)
"_lift2" :: "['a, lift, lift] ⇒ lift" ("(_<_,/ _>)" [1000] 999)
"_lift3" :: "['a, lift, lift, lift] ⇒ lift" ("(_<_,/ _,/ _>)" [1000] 999)
"_liftEqu" :: "[lift, lift] ⇒ lift" ("(_ =/ _)" [50,51] 50)
"_liftNeq" :: "[lift, lift] ⇒ lift" ("(_ ≠/ _)" [50,51] 50)
"_liftNot" :: "lift ⇒ lift" ("(¬ _)" [40] 40)
"_liftAnd" :: "[lift, lift] ⇒ lift" ("(_ ∧/ _)" [36,35] 35)
"_liftOr" :: "[lift, lift] ⇒ lift" ("(_ ∨/ _)" [31,30] 30)
"_liftImp" :: "[lift, lift] ⇒ lift" ("(_ ⟶/ _)" [26,25] 25)
"_liftIf" :: "[lift, lift, lift] ⇒ lift" ("(if (_)/ then (_)/ else (_))" 10)
"_liftPlus" :: "[lift, lift] ⇒ lift" ("(_ +/ _)" [66,65] 65)
"_liftMinus" :: "[lift, lift] ⇒ lift" ("(_ -/ _)" [66,65] 65)
"_liftTimes" :: "[lift, lift] ⇒ lift" ("(_ */ _)" [71,70] 70)
"_liftDiv" :: "[lift, lift] ⇒ lift" ("(_ div _)" [71,70] 70)
"_liftMod" :: "[lift, lift] ⇒ lift" ("(_ mod _)" [71,70] 70)
"_liftLess" :: "[lift, lift] ⇒ lift" ("(_/ < _)" [50, 51] 50)
"_liftLeq" :: "[lift, lift] ⇒ lift" ("(_/ ≤ _)" [50, 51] 50)
"_liftMem" :: "[lift, lift] ⇒ lift" ("(_/ ∈ _)" [50, 51] 50)
"_liftNotMem" :: "[lift, lift] ⇒ lift" ("(_/ ∉ _)" [50, 51] 50)
"_liftFinset" :: "liftargs ⇒ lift" ("{(_)}")
"_liftPair" :: "[lift,liftargs] ⇒ lift" ("(1'(_,/ _'))")
"_liftCons" :: "[lift, lift] ⇒ lift" ("(_ #/ _)" [65,66] 65)
"_liftApp" :: "[lift, lift] ⇒ lift" ("(_ @/ _)" [65,66] 65)
"_liftList" :: "liftargs ⇒ lift" ("[(_)]")
"_RAll" :: "[idts, lift] ⇒ lift" ("(3∀_./ _)" [0, 10] 10)
"_REx" :: "[idts, lift] ⇒ lift" ("(3∃_./ _)" [0, 10] 10)
"_REx1" :: "[idts, lift] ⇒ lift" ("(3∃!_./ _)" [0, 10] 10)
translations
"_const" == "CONST const"
"_lift" == "CONST lift"
"_lift2" == "CONST lift2"
"_lift3" == "CONST lift3"
"_Valid" == "CONST Valid"
"_RAll x A" == "Rall x. A"
"_REx x A" == "Rex x. A"
"_REx1 x A" == "Rex! x. A"
"w ⊨ A" => "A w"
"LIFT A" => "A::_⇒_"
"_liftEqu" == "_lift2 (=)"
"_liftNeq u v" == "_liftNot (_liftEqu u v)"
"_liftNot" == "_lift (CONST Not)"
"_liftAnd" == "_lift2 (∧)"
"_liftOr" == "_lift2 (∨)"
"_liftImp" == "_lift2 (⟶)"
"_liftIf" == "_lift3 (CONST If)"
"_liftPlus" == "_lift2 (+)"
"_liftMinus" == "_lift2 (-)"
"_liftTimes" == "_lift2 ((*))"
"_liftDiv" == "_lift2 (div)"
"_liftMod" == "_lift2 (mod)"
"_liftLess" == "_lift2 (<)"
"_liftLeq" == "_lift2 (≤)"
"_liftMem" == "_lift2 (∈)"
"_liftNotMem x xs" == "_liftNot (_liftMem x xs)"
"_liftFinset (_liftargs x xs)" == "_lift2 (CONST insert) x (_liftFinset xs)"
"_liftFinset x" == "_lift2 (CONST insert) x (_const {})"
"_liftPair x (_liftargs y z)" == "_liftPair x (_liftPair y z)"
"_liftPair" == "_lift2 (CONST Pair)"
"_liftCons" == "CONST lift2 (CONST Cons)"
"_liftApp" == "CONST lift2 (@)"
"_liftList (_liftargs x xs)" == "_liftCons x (_liftList xs)"
"_liftList x" == "_liftCons x (_const [])"
"w ⊨ ¬A" <= "_liftNot A w"
"w ⊨ A ∧ B" <= "_liftAnd A B w"
"w ⊨ A ∨ B" <= "_liftOr A B w"
"w ⊨ A ⟶ B" <= "_liftImp A B w"
"w ⊨ u = v" <= "_liftEqu u v w"
"w ⊨ ∀x. A" <= "_RAll x A w"
"w ⊨ ∃x. A" <= "_REx x A w"
"w ⊨ ∃!x. A" <= "_REx1 x A w"
subsection ‹Lemmas and tactics for "intensional" logics.›
lemmas intensional_rews [simp] =
unl_con unl_lift unl_lift2 unl_lift3 unl_Rall unl_Rex unl_Rex1
lemma inteq_reflection: "⊢ x=y ⟹ (x==y)"
apply (unfold Valid_def unl_lift2)
apply (rule eq_reflection)
apply (rule ext)
apply (erule spec)
done
lemma intI [intro!]: "(⋀w. w ⊨ A) ⟹ ⊢ A"
apply (unfold Valid_def)
apply (rule allI)
apply (erule meta_spec)
done
lemma intD [dest]: "⊢ A ⟹ w ⊨ A"
apply (unfold Valid_def)
apply (erule spec)
done
lemma int_simps:
"⊢ (x=x) = #True"
"⊢ (¬#True) = #False" "⊢ (¬#False) = #True" "⊢ (¬¬ P) = P"
"⊢ ((¬P) = P) = #False" "⊢ (P = (¬P)) = #False"
"⊢ (P ≠ Q) = (P = (¬Q))"
"⊢ (#True=P) = P" "⊢ (P=#True) = P"
"⊢ (#True ⟶ P) = P" "⊢ (#False ⟶ P) = #True"
"⊢ (P ⟶ #True) = #True" "⊢ (P ⟶ P) = #True"
"⊢ (P ⟶ #False) = (¬P)" "⊢ (P ⟶ ¬P) = (¬P)"
"⊢ (P ∧ #True) = P" "⊢ (#True ∧ P) = P"
"⊢ (P ∧ #False) = #False" "⊢ (#False ∧ P) = #False"
"⊢ (P ∧ P) = P" "⊢ (P ∧ ¬P) = #False" "⊢ (¬P ∧ P) = #False"
"⊢ (P ∨ #True) = #True" "⊢ (#True ∨ P) = #True"
"⊢ (P ∨ #False) = P" "⊢ (#False ∨ P) = P"
"⊢ (P ∨ P) = P" "⊢ (P ∨ ¬P) = #True" "⊢ (¬P ∨ P) = #True"
"⊢ (∀x. P) = P" "⊢ (∃x. P) = P"
"⊢ (¬Q ⟶ ¬P) = (P ⟶ Q)"
"⊢ (P∨Q ⟶ R) = ((P⟶R)∧(Q⟶R))"
apply (unfold Valid_def intensional_rews)
apply blast+
done
declare int_simps [THEN inteq_reflection, simp]
lemma TrueW [simp]: "⊢ #True"
by (simp add: Valid_def unl_con)
ML ‹
fun int_unlift ctxt th =
rewrite_rule ctxt @{thms intensional_rews} (th RS @{thm intD} handle THM _ => th);
fun int_rewrite ctxt th =
zero_var_indexes (rewrite_rule ctxt @{thms intensional_rews} (th RS @{thm inteq_reflection}))
fun flatten t =
let
fun matchres tha i thb =
case Seq.chop 2 (Thm.biresolution NONE true [(false,tha)] i thb) of
([th],_) => th
| ([],_) => raise THM("matchres: no match", i, [tha,thb])
| _ => raise THM("matchres: multiple unifiers", i, [tha,thb])
fun matchsome tha thb =
let fun hmatch 0 = raise THM("matchsome: no match", 0, [tha,thb])
| hmatch n = matchres tha n thb handle THM _ => hmatch (n-1)
in hmatch (Thm.nprems_of thb) end
fun hflatten t =
case Thm.concl_of t of
Const _ $ (Const (\<^const_name>‹HOL.implies›, _) $ _ $ _) => hflatten (t RS mp)
| _ => (hflatten (matchsome conjI t)) handle THM _ => zero_var_indexes t
in
hflatten t
end
fun int_use ctxt th =
case Thm.concl_of th of
Const _ $ (Const (\<^const_name>‹Valid›, _) $ _) =>
(flatten (int_unlift ctxt th) handle THM _ => th)
| _ => th
›
attribute_setup int_unlift =
‹Scan.succeed (Thm.rule_attribute [] (int_unlift o Context.proof_of))›
attribute_setup int_rewrite =
‹Scan.succeed (Thm.rule_attribute [] (int_rewrite o Context.proof_of))›
attribute_setup flatten =
‹Scan.succeed (Thm.rule_attribute [] (K flatten))›
attribute_setup int_use =
‹Scan.succeed (Thm.rule_attribute [] (int_use o Context.proof_of))›
lemma Not_Rall: "⊢ (¬(∀x. F x)) = (∃x. ¬F x)"
by (simp add: Valid_def)
lemma Not_Rex: "⊢ (¬ (∃x. F x)) = (∀x. ¬ F x)"
by (simp add: Valid_def)
end