Theory ProcedureInterface
section ‹Procedure interface for RPC-Memory components›
theory ProcedureInterface
imports "HOL-TLA.TLA" RPCMemoryParams
begin
typedecl ('a,'r) chan
type_synonym ('a,'r) channel =" (PrIds ⇒ ('a,'r) chan) stfun"
consts
cbit :: "('a,'r) chan ⇒ bit"
rbit :: "('a,'r) chan ⇒ bit"
arg :: "('a,'r) chan ⇒ 'a"
res :: "('a,'r) chan ⇒ 'r"
definition caller :: "('a,'r) channel ⇒ (PrIds ⇒ (bit * 'a)) stfun"
where "caller ch == λs p. (cbit (ch s p), arg (ch s p))"
definition rtrner :: "('a,'r) channel ⇒ (PrIds ⇒ (bit * 'r)) stfun"
where "rtrner ch == λs p. (rbit (ch s p), res (ch s p))"
definition slice :: "('a ⇒ 'b) stfun ⇒ 'a ⇒ 'b stfun"
where "slice x i s ≡ x s i"
syntax
"_slice" :: "[lift, 'a] ⇒ lift" ("(_!_)" [70,70] 70)
translations
"_slice" ⇌ "CONST slice"
definition Calling :: "('a,'r) channel ⇒ PrIds ⇒ stpred"
where "Calling ch p == PRED cbit< ch!p > ≠ rbit< ch!p >"
definition ACall :: "('a,'r) channel ⇒ PrIds ⇒ 'a stfun ⇒ action"
where "ACall ch p v ≡ ACT
¬ $Calling ch p
∧ (cbit<ch!p>$ ≠ $rbit<ch!p>)
∧ (arg<ch!p>$ = $v)"
definition AReturn :: "('a,'r) channel ⇒ PrIds ⇒ 'r stfun ⇒ action"
where "AReturn ch p v == ACT
$Calling ch p
∧ (rbit<ch!p>$ = $cbit<ch!p>)
∧ (res<ch!p>$ = $v)"
syntax
"_Call" :: "['a, 'b, lift] ⇒ lift" ("(Call _ _ _)" [90,90,90] 90)
"_Return" :: "['a, 'b, lift] ⇒ lift" ("(Return _ _ _)" [90,90,90] 90)
translations
"_Call" ⇌ "CONST ACall"
"_Return" ⇌ "CONST AReturn"
definition PLegalCaller :: "('a,'r) channel ⇒ PrIds ⇒ temporal"
where "PLegalCaller ch p == TEMP
Init(¬ Calling ch p)
∧ □[∃a. Call ch p a ]_((caller ch)!p)"
definition LegalCaller :: "('a,'r) channel ⇒ temporal"
where "LegalCaller ch == TEMP (∀p. PLegalCaller ch p)"
definition PLegalReturner :: "('a,'r) channel ⇒ PrIds ⇒ temporal"
where "PLegalReturner ch p == TEMP □[∃v. Return ch p v ]_((rtrner ch)!p)"
definition LegalReturner :: "('a,'r) channel ⇒ temporal"
where "LegalReturner ch == TEMP (∀p. PLegalReturner ch p)"
declare slice_def [simp]
lemmas Procedure_defs = caller_def rtrner_def Calling_def ACall_def AReturn_def
PLegalCaller_def LegalCaller_def PLegalReturner_def LegalReturner_def
lemma Call_changed: "⊢ Call ch p v ⟶ <Call ch p v>_((caller ch)!p)"
by (auto simp: angle_def ACall_def caller_def Calling_def)
lemma Return_changed: "⊢ Return ch p v ⟶ <Return ch p v>_((rtrner ch)!p)"
by (auto simp: angle_def AReturn_def rtrner_def Calling_def)
end