Theory TLA
section ‹The temporal level of TLA›
theory TLA
imports Init
begin
consts
Box :: "('w::world) form ⇒ temporal"
Dmd :: "('w::world) form ⇒ temporal"
leadsto :: "['w::world form, 'v::world form] ⇒ temporal"
Stable :: "stpred ⇒ temporal"
WF :: "[action, 'a stfun] ⇒ temporal"
SF :: "[action, 'a stfun] ⇒ temporal"
EEx :: "('a stfun ⇒ temporal) ⇒ temporal" (binder "Eex " 10)
AAll :: "('a stfun ⇒ temporal) ⇒ temporal" (binder "Aall " 10)
syntax
"_Box" :: "lift ⇒ lift" ("(□_)" [40] 40)
"_Dmd" :: "lift ⇒ lift" ("(◇_)" [40] 40)
"_leadsto" :: "[lift,lift] ⇒ lift" ("(_ ↝ _)" [23,22] 22)
"_stable" :: "lift ⇒ lift" ("(stable/ _)")
"_WF" :: "[lift,lift] ⇒ lift" ("(WF'(_')'_(_))" [0,60] 55)
"_SF" :: "[lift,lift] ⇒ lift" ("(SF'(_')'_(_))" [0,60] 55)
"_EEx" :: "[idts, lift] ⇒ lift" ("(3∃∃ _./ _)" [0,10] 10)
"_AAll" :: "[idts, lift] ⇒ lift" ("(3∀∀ _./ _)" [0,10] 10)
translations
"_Box" == "CONST Box"
"_Dmd" == "CONST Dmd"
"_leadsto" == "CONST leadsto"
"_stable" == "CONST Stable"
"_WF" == "CONST WF"
"_SF" == "CONST SF"
"_EEx v A" == "Eex v. A"
"_AAll v A" == "Aall v. A"
"sigma ⊨ □F" <= "_Box F sigma"
"sigma ⊨ ◇F" <= "_Dmd F sigma"
"sigma ⊨ F ↝ G" <= "_leadsto F G sigma"
"sigma ⊨ stable P" <= "_stable P sigma"
"sigma ⊨ WF(A)_v" <= "_WF A v sigma"
"sigma ⊨ SF(A)_v" <= "_SF A v sigma"
"sigma ⊨ ∃∃x. F" <= "_EEx x F sigma"
"sigma ⊨ ∀∀x. F" <= "_AAll x F sigma"
axiomatization where
dmd_def: "⋀F. TEMP ◇F == TEMP ¬□¬F"
axiomatization where
boxInit: "⋀F. TEMP □F == TEMP □Init F" and
leadsto_def: "⋀F G. TEMP F ↝ G == TEMP □(Init F ⟶ ◇G)" and
stable_def: "⋀P. TEMP stable P == TEMP □($P ⟶ P$)" and
WF_def: "TEMP WF(A)_v == TEMP ◇□ Enabled(<A>_v) ⟶ □◇<A>_v" and
SF_def: "TEMP SF(A)_v == TEMP □◇ Enabled(<A>_v) ⟶ □◇<A>_v" and
aall_def: "TEMP (∀∀x. F x) == TEMP ¬ (∃∃x. ¬ F x)"
axiomatization where
normalT: "⋀F G. ⊢ □(F ⟶ G) ⟶ (□F ⟶ □G)" and
reflT: "⋀F. ⊢ □F ⟶ F" and
transT: "⋀F. ⊢ □F ⟶ □□F" and
linT: "⋀F G. ⊢ ◇F ∧ ◇G ⟶ (◇(F ∧ ◇G)) ∨ (◇(G ∧ ◇F))" and
discT: "⋀F. ⊢ □(F ⟶ ◇(¬F ∧ ◇F)) ⟶ (F ⟶ □◇F)" and
primeI: "⋀P. ⊢ □P ⟶ Init P`" and
primeE: "⋀P F. ⊢ □(Init P ⟶ □F) ⟶ Init P` ⟶ (F ⟶ □F)" and
indT: "⋀P F. ⊢ □(Init P ∧ ¬□F ⟶ Init P` ∧ F) ⟶ Init P ⟶ □F" and
allT: "⋀F. ⊢ (∀x. □(F x)) = (□(∀ x. F x))"
axiomatization where
necT: "⋀F. ⊢ F ⟹ ⊢ □F"
axiomatization where
eexI: "⊢ F x ⟶ (∃∃x. F x)" and
eexE: "⟦ sigma ⊨ (∃∃x. F x); basevars vs;
(⋀x. ⟦ basevars (x, vs); sigma ⊨ F x ⟧ ⟹ (G sigma)::bool)
⟧ ⟹ G sigma" and
history: "⊢ ∃∃h. Init(h = ha) ∧ □(∀x. $h = #x ⟶ h` = hb x)"
lemma tempI [intro!]: "(⋀sigma. sigma ⊨ (F::temporal)) ⟹ ⊢ F"
apply (rule intI)
apply (erule meta_spec)
done
lemma tempD [dest]: "⊢ (F::temporal) ⟹ sigma ⊨ F"
by (erule intD)
ML ‹
fun temp_unlift ctxt th =
(rewrite_rule ctxt @{thms action_rews} (th RS @{thm tempD}))
handle THM _ => action_unlift ctxt th;
val temp_rewrite = int_rewrite
fun temp_use ctxt th =
case Thm.concl_of th of
Const _ $ (Const (\<^const_name>‹Intensional.Valid›, _) $ _) =>
((flatten (temp_unlift ctxt th)) handle THM _ => th)
| _ => th;
fun try_rewrite ctxt th = temp_rewrite ctxt th handle THM _ => temp_use ctxt th;
›
attribute_setup temp_unlift =
‹Scan.succeed (Thm.rule_attribute [] (temp_unlift o Context.proof_of))›
attribute_setup temp_rewrite =
‹Scan.succeed (Thm.rule_attribute [] (temp_rewrite o Context.proof_of))›
attribute_setup temp_use =
‹Scan.succeed (Thm.rule_attribute [] (temp_use o Context.proof_of))›
attribute_setup try_rewrite =
‹Scan.succeed (Thm.rule_attribute [] (try_rewrite o Context.proof_of))›
section "Simple temporal logic"
lemmas boxNotInit = boxInit [of "LIFT ¬F", unfolded Init_simps] for F
lemma dmdInit: "TEMP ◇F == TEMP ◇ Init F"
apply (unfold dmd_def)
apply (unfold boxInit [of "LIFT ¬F"])
apply (simp (no_asm) add: Init_simps)
done
lemmas dmdNotInit = dmdInit [of "LIFT ¬F", unfolded Init_simps] for F
lemmas boxInit_stp = boxInit [where 'a = state]
lemmas boxInit_act = boxInit [where 'a = "state * state"]
lemmas dmdInit_stp = dmdInit [where 'a = state]
lemmas dmdInit_act = dmdInit [where 'a = "state * state"]
lemmas boxInitD = boxInit [symmetric]
lemmas dmdInitD = dmdInit [symmetric]
lemmas boxNotInitD = boxNotInit [symmetric]
lemmas dmdNotInitD = dmdNotInit [symmetric]
lemmas Init_simps = Init_simps boxInitD dmdInitD boxNotInitD dmdNotInitD
lemmas STL2 = reflT
lemma STL2_gen: "⊢ □F ⟶ Init F"
apply (unfold boxInit [of F])
apply (rule STL2)
done
lemma InitDmd: "⊢ F ⟶ ◇ F"
apply (unfold dmd_def)
apply (auto dest!: STL2 [temp_use])
done
lemma InitDmd_gen: "⊢ Init F ⟶ ◇F"
apply clarsimp
apply (drule InitDmd [temp_use])
apply (simp add: dmdInitD)
done
lemma STL3: "⊢ (□□F) = (□F)"
by (auto elim: transT [temp_use] STL2 [temp_use])
lemmas dup_boxE = STL3 [temp_unlift, THEN iffD2, elim_format]
lemmas dup_boxD = STL3 [temp_unlift, THEN iffD1]
lemma DmdDmd: "⊢ (◇◇F) = (◇F)"
by (auto simp add: dmd_def [try_rewrite] STL3 [try_rewrite])
lemmas dup_dmdE = DmdDmd [temp_unlift, THEN iffD2, elim_format]
lemmas dup_dmdD = DmdDmd [temp_unlift, THEN iffD1]
lemma STL4:
assumes "⊢ F ⟶ G"
shows "⊢ □F ⟶ □G"
apply clarsimp
apply (rule normalT [temp_use])
apply (rule assms [THEN necT, temp_use])
apply assumption
done
lemma STL4E: "⟦ sigma ⊨ □F; ⊢ F ⟶ G ⟧ ⟹ sigma ⊨ □G"
by (erule (1) STL4 [temp_use])
lemma STL4_gen: "⊢ Init F ⟶ Init G ⟹ ⊢ □F ⟶ □G"
apply (drule STL4)
apply (simp add: boxInitD)
done
lemma STL4E_gen: "⟦ sigma ⊨ □F; ⊢ Init F ⟶ Init G ⟧ ⟹ sigma ⊨ □G"
by (erule (1) STL4_gen [temp_use])
lemma DmdImpl:
assumes prem: "⊢ F ⟶ G"
shows "⊢ ◇F ⟶ ◇G"
apply (unfold dmd_def)
apply (fastforce intro!: prem [temp_use] elim!: STL4E [temp_use])
done
lemma DmdImplE: "⟦ sigma ⊨ ◇F; ⊢ F ⟶ G ⟧ ⟹ sigma ⊨ ◇G"
by (erule (1) DmdImpl [temp_use])
lemma STL5: "⊢ (□F ∧ □G) = (□(F ∧ G))"
apply auto
apply (subgoal_tac "sigma ⊨ □ (G ⟶ (F ∧ G))")
apply (erule normalT [temp_use])
apply (fastforce elim!: STL4E [temp_use])+
done
lemmas split_box_conj = STL5 [temp_unlift, symmetric]
lemma box_conjE:
assumes "sigma ⊨ □F"
and "sigma ⊨ □G"
and "sigma ⊨ □(F∧G) ⟹ PROP R"
shows "PROP R"
by (rule assms STL5 [temp_unlift, THEN iffD1] conjI)+
lemmas box_conjE_temp = box_conjE [where 'a = behavior]
lemmas box_conjE_stp = box_conjE [where 'a = state]
lemmas box_conjE_act = box_conjE [where 'a = "state * state"]
lemma box_thin: "⟦ sigma ⊨ □F; PROP W ⟧ ⟹ PROP W" .
ML ‹
fun merge_box_tac ctxt i =
REPEAT_DETERM (EVERY [eresolve_tac ctxt @{thms box_conjE} i, assume_tac ctxt i,
eresolve_tac ctxt @{thms box_thin} i])
fun merge_temp_box_tac ctxt i =
REPEAT_DETERM (EVERY [eresolve_tac ctxt @{thms box_conjE_temp} i, assume_tac ctxt i,
Rule_Insts.eres_inst_tac ctxt [((("'a", 0), Position.none), "behavior")] [] @{thm box_thin} i])
fun merge_stp_box_tac ctxt i =
REPEAT_DETERM (EVERY [eresolve_tac ctxt @{thms box_conjE_stp} i, assume_tac ctxt i,
Rule_Insts.eres_inst_tac ctxt [((("'a", 0), Position.none), "state")] [] @{thm box_thin} i])
fun merge_act_box_tac ctxt i =
REPEAT_DETERM (EVERY [eresolve_tac ctxt @{thms box_conjE_act} i, assume_tac ctxt i,
Rule_Insts.eres_inst_tac ctxt [((("'a", 0), Position.none), "state * state")] [] @{thm box_thin} i])
›
method_setup merge_box = ‹Scan.succeed (SIMPLE_METHOD' o merge_box_tac)›
method_setup merge_temp_box = ‹Scan.succeed (SIMPLE_METHOD' o merge_temp_box_tac)›
method_setup merge_stp_box = ‹Scan.succeed (SIMPLE_METHOD' o merge_stp_box_tac)›
method_setup merge_act_box = ‹Scan.succeed (SIMPLE_METHOD' o merge_act_box_tac)›
lemmas all_box = allT [temp_unlift, symmetric]
lemma DmdOr: "⊢ (◇(F ∨ G)) = (◇F ∨ ◇G)"
apply (auto simp add: dmd_def split_box_conj [try_rewrite])
apply (erule contrapos_np, merge_box, fastforce elim!: STL4E [temp_use])+
done
lemma exT: "⊢ (∃x. ◇(F x)) = (◇(∃x. F x))"
by (auto simp: dmd_def Not_Rex [try_rewrite] all_box [try_rewrite])
lemmas ex_dmd = exT [temp_unlift, symmetric]
lemma STL4Edup: "⋀sigma. ⟦ sigma ⊨ □A; sigma ⊨ □F; ⊢ F ∧ □A ⟶ G ⟧ ⟹ sigma ⊨ □G"
apply (erule dup_boxE)
apply merge_box
apply (erule STL4E)
apply assumption
done
lemma DmdImpl2:
"⋀sigma. ⟦ sigma ⊨ ◇F; sigma ⊨ □(F ⟶ G) ⟧ ⟹ sigma ⊨ ◇G"
apply (unfold dmd_def)
apply auto
apply (erule notE)
apply merge_box
apply (fastforce elim!: STL4E [temp_use])
done
lemma InfImpl:
assumes 1: "sigma ⊨ □◇F"
and 2: "sigma ⊨ □G"
and 3: "⊢ F ∧ G ⟶ H"
shows "sigma ⊨ □◇H"
apply (insert 1 2)
apply (erule_tac F = G in dup_boxE)
apply merge_box
apply (fastforce elim!: STL4E [temp_use] DmdImpl2 [temp_use] intro!: 3 [temp_use])
done
lemma BoxDmd: "⊢ □F ∧ ◇G ⟶ ◇(□F ∧ G)"
apply (unfold dmd_def)
apply clarsimp
apply (erule dup_boxE)
apply merge_box
apply (erule contrapos_np)
apply (fastforce elim!: STL4E [temp_use])
done
lemma BoxDmd_simple: "⊢ □F ∧ ◇G ⟶ ◇(F ∧ G)"
apply (unfold dmd_def)
apply clarsimp
apply merge_box
apply (fastforce elim!: notE STL4E [temp_use])
done
lemma BoxDmd2_simple: "⊢ □F ∧ ◇G ⟶ ◇(G ∧ F)"
apply (unfold dmd_def)
apply clarsimp
apply merge_box
apply (fastforce elim!: notE STL4E [temp_use])
done
lemma DmdImpldup:
assumes 1: "sigma ⊨ □A"
and 2: "sigma ⊨ ◇F"
and 3: "⊢ □A ∧ F ⟶ G"
shows "sigma ⊨ ◇G"
apply (rule 2 [THEN 1 [THEN BoxDmd [temp_use]], THEN DmdImplE])
apply (rule 3)
done
lemma STL6: "⊢ ◇□F ∧ ◇□G ⟶ ◇□(F ∧ G)"
apply (auto simp: STL5 [temp_rewrite, symmetric])
apply (drule linT [temp_use])
apply assumption
apply (erule thin_rl)
apply (rule DmdDmd [temp_unlift, THEN iffD1])
apply (erule disjE)
apply (erule DmdImplE)
apply (rule BoxDmd)
apply (erule DmdImplE)
apply auto
apply (drule BoxDmd [temp_use])
apply assumption
apply (erule thin_rl)
apply (fastforce elim!: DmdImplE [temp_use])
done
section "Simplification of constants"
lemma BoxConst: "⊢ (□#P) = #P"
apply (rule tempI)
apply (cases P)
apply (auto intro!: necT [temp_use] dest: STL2_gen [temp_use] simp: Init_simps)
done
lemma DmdConst: "⊢ (◇#P) = #P"
apply (unfold dmd_def)
apply (cases P)
apply (simp_all add: BoxConst [try_rewrite])
done
lemmas temp_simps [temp_rewrite, simp] = BoxConst DmdConst
section "Further rewrites"
lemma NotBox: "⊢ (¬□F) = (◇¬F)"
by (simp add: dmd_def)
lemma NotDmd: "⊢ (¬◇F) = (□¬F)"
by (simp add: dmd_def)
lemmas more_temp_simps1 =
STL3 [temp_rewrite] DmdDmd [temp_rewrite] NotBox [temp_rewrite] NotDmd [temp_rewrite]
NotBox [temp_unlift, THEN eq_reflection]
NotDmd [temp_unlift, THEN eq_reflection]
lemma BoxDmdBox: "⊢ (□◇□F) = (◇□F)"
apply (auto dest!: STL2 [temp_use])
apply (rule ccontr)
apply (subgoal_tac "sigma ⊨ ◇□□F ∧ ◇□¬□F")
apply (erule thin_rl)
apply auto
apply (drule STL6 [temp_use])
apply assumption
apply simp
apply (simp_all add: more_temp_simps1)
done
lemma DmdBoxDmd: "⊢ (◇□◇F) = (□◇F)"
apply (unfold dmd_def)
apply (auto simp: BoxDmdBox [unfolded dmd_def, try_rewrite])
done
lemmas more_temp_simps2 = more_temp_simps1 BoxDmdBox [temp_rewrite] DmdBoxDmd [temp_rewrite]
lemma BoxOr: "⋀sigma. ⟦ sigma ⊨ □F ∨ □G ⟧ ⟹ sigma ⊨ □(F ∨ G)"
by (fastforce elim!: STL4E [temp_use])
lemma DBImplBD: "⊢ ◇□F ⟶ □◇F"
apply clarsimp
apply (rule ccontr)
apply (simp add: more_temp_simps2)
apply (drule STL6 [temp_use])
apply assumption
apply simp
done
lemma BoxDmdDmdBox: "⊢ □◇F ∧ ◇□G ⟶ □◇(F ∧ G)"
apply clarsimp
apply (rule ccontr)
apply (unfold more_temp_simps2)
apply (drule STL6 [temp_use])
apply assumption
apply (subgoal_tac "sigma ⊨ ◇□¬F")
apply (force simp: dmd_def)
apply (fastforce elim: DmdImplE [temp_use] STL4E [temp_use])
done
section "priming"
lemma STL2_pr: "⊢ □P ⟶ Init P ∧ Init P`"
by (fastforce intro!: STL2_gen [temp_use] primeI [temp_use])
lemma BoxPrime: "⊢ □P ⟶ □($P ∧ P$)"
apply clarsimp
apply (erule dup_boxE)
apply (unfold boxInit_act)
apply (erule STL4E)
apply (auto simp: Init_simps dest!: STL2_pr [temp_use])
done
lemma TLA2:
assumes "⊢ $P ∧ P$ ⟶ A"
shows "⊢ □P ⟶ □A"
apply clarsimp
apply (drule BoxPrime [temp_use])
apply (auto simp: Init_stp_act_rev [try_rewrite] intro!: assms [temp_use]
elim!: STL4E [temp_use])
done
lemma TLA2E: "⟦ sigma ⊨ □P; ⊢ $P ∧ P$ ⟶ A ⟧ ⟹ sigma ⊨ □A"
by (erule (1) TLA2 [temp_use])
lemma DmdPrime: "⊢ (◇P`) ⟶ (◇P)"
apply (unfold dmd_def)
apply (fastforce elim!: TLA2E [temp_use])
done
lemmas PrimeDmd = InitDmd_gen [temp_use, THEN DmdPrime [temp_use]]
section "stable, invariant"
lemma ind_rule:
"⟦ sigma ⊨ □H; sigma ⊨ Init P; ⊢ H ⟶ (Init P ∧ ¬□F ⟶ Init(P`) ∧ F) ⟧
⟹ sigma ⊨ □F"
apply (rule indT [temp_use])
apply (erule (2) STL4E)
done
lemma box_stp_act: "⊢ (□$P) = (□P)"
by (simp add: boxInit_act Init_simps)
lemmas box_stp_actI = box_stp_act [temp_use, THEN iffD2]
lemmas box_stp_actD = box_stp_act [temp_use, THEN iffD1]
lemmas more_temp_simps3 = box_stp_act [temp_rewrite] more_temp_simps2
lemma INV1:
"⊢ (Init P) ⟶ (stable P) ⟶ □P"
apply (unfold stable_def boxInit_stp boxInit_act)
apply clarsimp
apply (erule ind_rule)
apply (auto simp: Init_simps elim: ind_rule)
done
lemma StableT:
"⋀P. ⊢ $P ∧ A ⟶ P` ⟹ ⊢ □A ⟶ stable P"
apply (unfold stable_def)
apply (fastforce elim!: STL4E [temp_use])
done
lemma Stable: "⟦ sigma ⊨ □A; ⊢ $P ∧ A ⟶ P` ⟧ ⟹ sigma ⊨ stable P"
by (erule (1) StableT [temp_use])
lemma StableBox: "⊢ (stable P) ⟶ □(Init P ⟶ □P)"
apply (unfold stable_def)
apply clarsimp
apply (erule dup_boxE)
apply (force simp: stable_def elim: STL4E [temp_use] INV1 [temp_use])
done
lemma DmdStable: "⊢ (stable P) ∧ ◇P ⟶ ◇□P"
apply clarsimp
apply (rule DmdImpl2)
prefer 2
apply (erule StableBox [temp_use])
apply (simp add: dmdInitD)
done
ML ‹
fun inv_tac ctxt =
SELECT_GOAL
(EVERY
[auto_tac ctxt,
TRY (merge_box_tac ctxt 1),
resolve_tac ctxt [temp_use ctxt @{thm INV1}] 1,
TRYALL (eresolve_tac ctxt @{thms Stable})]);
fun auto_inv_tac ctxt =
SELECT_GOAL
(inv_tac ctxt 1 THEN
(TRYALL (action_simp_tac
(ctxt addsimps [@{thm Init_stp}, @{thm Init_act}]) [] [@{thm squareE}])));
›
method_setup invariant = ‹
Method.sections Clasimp.clasimp_modifiers >> (K (SIMPLE_METHOD' o inv_tac))
›
method_setup auto_invariant = ‹
Method.sections Clasimp.clasimp_modifiers >> (K (SIMPLE_METHOD' o auto_inv_tac))
›
lemma unless: "⊢ □($P ⟶ P` ∨ Q`) ⟶ (stable P) ∨ ◇Q"
apply (unfold dmd_def)
apply (clarsimp dest!: BoxPrime [temp_use])
apply merge_box
apply (erule contrapos_np)
apply (fastforce elim!: Stable [temp_use])
done
section "recursive expansions"
lemma BoxRec: "⊢ (□P) = (Init P ∧ □P`)"
apply (auto intro!: STL2_gen [temp_use])
apply (fastforce elim!: TLA2E [temp_use])
apply (auto simp: stable_def elim!: INV1 [temp_use] STL4E [temp_use])
done
lemma DmdRec: "⊢ (◇P) = (Init P ∨ ◇P`)"
apply (unfold dmd_def BoxRec [temp_rewrite])
apply (auto simp: Init_simps)
done
lemma DmdRec2: "⋀sigma. ⟦ sigma ⊨ ◇P; sigma ⊨ □¬P` ⟧ ⟹ sigma ⊨ Init P"
apply (force simp: DmdRec [temp_rewrite] dmd_def)
done
lemma InfinitePrime: "⊢ (□◇P) = (□◇P`)"
apply auto
apply (rule classical)
apply (rule DBImplBD [temp_use])
apply (subgoal_tac "sigma ⊨ ◇□P")
apply (fastforce elim!: DmdImplE [temp_use] TLA2E [temp_use])
apply (subgoal_tac "sigma ⊨ ◇□ (◇P ∧ □¬P`)")
apply (force simp: boxInit_stp [temp_use]
elim!: DmdImplE [temp_use] STL4E [temp_use] DmdRec2 [temp_use])
apply (force intro!: STL6 [temp_use] simp: more_temp_simps3)
apply (fastforce intro: DmdPrime [temp_use] elim!: STL4E [temp_use])
done
lemma InfiniteEnsures:
"⟦ sigma ⊨ □N; sigma ⊨ □◇A; ⊢ A ∧ N ⟶ P` ⟧ ⟹ sigma ⊨ □◇P"
apply (unfold InfinitePrime [temp_rewrite])
apply (rule InfImpl)
apply assumption+
done
section "fairness"
lemma WF_alt: "⊢ WF(A)_v = (□◇¬Enabled(<A>_v) ∨ □◇<A>_v)"
apply (unfold WF_def dmd_def)
apply fastforce
done
lemma SF_alt: "⊢ SF(A)_v = (◇□¬Enabled(<A>_v) ∨ □◇<A>_v)"
apply (unfold SF_def dmd_def)
apply fastforce
done
lemma BoxWFI: "⊢ WF(A)_v ⟶ □WF(A)_v"
by (auto simp: WF_alt [try_rewrite] more_temp_simps3 intro!: BoxOr [temp_use])
lemma WF_Box: "⊢ (□WF(A)_v) = WF(A)_v"
by (fastforce intro!: BoxWFI [temp_use] dest!: STL2 [temp_use])
lemma BoxSFI: "⊢ SF(A)_v ⟶ □SF(A)_v"
by (auto simp: SF_alt [try_rewrite] more_temp_simps3 intro!: BoxOr [temp_use])
lemma SF_Box: "⊢ (□SF(A)_v) = SF(A)_v"
by (fastforce intro!: BoxSFI [temp_use] dest!: STL2 [temp_use])
lemmas more_temp_simps = more_temp_simps3 WF_Box [temp_rewrite] SF_Box [temp_rewrite]
lemma SFImplWF: "⊢ SF(A)_v ⟶ WF(A)_v"
apply (unfold SF_def WF_def)
apply (fastforce dest!: DBImplBD [temp_use])
done
ML ‹
fun box_fair_tac ctxt =
SELECT_GOAL (REPEAT (dresolve_tac ctxt [@{thm BoxWFI}, @{thm BoxSFI}] 1))
›
section "↝"
lemma leadsto_init: "⊢ (Init F) ∧ (F ↝ G) ⟶ ◇G"
apply (unfold leadsto_def)
apply (auto dest!: STL2 [temp_use])
done
lemmas leadsto_init_temp = leadsto_init [where 'a = behavior, unfolded Init_simps]
lemma streett_leadsto: "⊢ (□◇Init F ⟶ □◇G) = (◇(F ↝ G))"
apply (unfold leadsto_def)
apply auto
apply (simp add: more_temp_simps)
apply (fastforce elim!: DmdImplE [temp_use] STL4E [temp_use])
apply (fastforce intro!: InitDmd [temp_use] elim!: STL4E [temp_use])
apply (subgoal_tac "sigma ⊨ □◇◇G")
apply (simp add: more_temp_simps)
apply (drule BoxDmdDmdBox [temp_use])
apply assumption
apply (fastforce elim!: DmdImplE [temp_use] STL4E [temp_use])
done
lemma leadsto_infinite: "⊢ □◇F ∧ (F ↝ G) ⟶ □◇G"
apply clarsimp
apply (erule InitDmd [temp_use, THEN streett_leadsto [temp_unlift, THEN iffD2, THEN mp]])
apply (simp add: dmdInitD)
done
lemma leadsto_SF: "⊢ (Enabled(<A>_v) ↝ <A>_v) ⟶ SF(A)_v"
apply (unfold SF_def)
apply (clarsimp elim!: leadsto_infinite [temp_use])
done
lemma leadsto_WF: "⊢ (Enabled(<A>_v) ↝ <A>_v) ⟶ WF(A)_v"
by (clarsimp intro!: SFImplWF [temp_use] leadsto_SF [temp_use])
lemma INV_leadsto: "⊢ □I ∧ (P ∧ I ↝ Q) ⟶ (P ↝ Q)"
apply (unfold leadsto_def)
apply clarsimp
apply (erule STL4Edup)
apply assumption
apply (auto simp: Init_simps dest!: STL2_gen [temp_use])
done
lemma leadsto_classical: "⊢ (Init F ∧ □¬G ↝ G) ⟶ (F ↝ G)"
apply (unfold leadsto_def dmd_def)
apply (force simp: Init_simps elim!: STL4E [temp_use])
done
lemma leadsto_false: "⊢ (F ↝ #False) = (□¬F)"
apply (unfold leadsto_def)
apply (simp add: boxNotInitD)
done
lemma leadsto_exists: "⊢ ((∃x. F x) ↝ G) = (∀x. (F x ↝ G))"
apply (unfold leadsto_def)
apply (auto simp: allT [try_rewrite] Init_simps elim!: STL4E [temp_use])
done
lemma ImplLeadsto_gen: "⊢ □(Init F ⟶ Init G) ⟶ (F ↝ G)"
apply (unfold leadsto_def)
apply (auto intro!: InitDmd_gen [temp_use]
elim!: STL4E_gen [temp_use] simp: Init_simps)
done
lemmas ImplLeadsto =
ImplLeadsto_gen [where 'a = behavior and 'b = behavior, unfolded Init_simps]
lemma ImplLeadsto_simple: "⋀F G. ⊢ F ⟶ G ⟹ ⊢ F ↝ G"
by (auto simp: Init_def intro!: ImplLeadsto_gen [temp_use] necT [temp_use])
lemma EnsuresLeadsto:
assumes "⊢ A ∧ $P ⟶ Q`"
shows "⊢ □A ⟶ (P ↝ Q)"
apply (unfold leadsto_def)
apply (clarsimp elim!: INV_leadsto [temp_use])
apply (erule STL4E_gen)
apply (auto simp: Init_defs intro!: PrimeDmd [temp_use] assms [temp_use])
done
lemma EnsuresLeadsto2: "⊢ □($P ⟶ Q`) ⟶ (P ↝ Q)"
apply (unfold leadsto_def)
apply clarsimp
apply (erule STL4E_gen)
apply (auto simp: Init_simps intro!: PrimeDmd [temp_use])
done
lemma ensures:
assumes 1: "⊢ $P ∧ N ⟶ P` ∨ Q`"
and 2: "⊢ ($P ∧ N) ∧ A ⟶ Q`"
shows "⊢ □N ∧ □(□P ⟶ ◇A) ⟶ (P ↝ Q)"
apply (unfold leadsto_def)
apply clarsimp
apply (erule STL4Edup)
apply assumption
apply clarsimp
apply (subgoal_tac "sigmaa ⊨ □($P ⟶ P` ∨ Q`) ")
apply (drule unless [temp_use])
apply (clarsimp dest!: INV1 [temp_use])
apply (rule 2 [THEN DmdImpl, temp_use, THEN DmdPrime [temp_use]])
apply (force intro!: BoxDmd_simple [temp_use]
simp: split_box_conj [try_rewrite] box_stp_act [try_rewrite])
apply (force elim: STL4E [temp_use] dest: 1 [temp_use])
done
lemma ensures_simple:
"⟦ ⊢ $P ∧ N ⟶ P` ∨ Q`;
⊢ ($P ∧ N) ∧ A ⟶ Q`
⟧ ⟹ ⊢ □N ∧ □◇A ⟶ (P ↝ Q)"
apply clarsimp
apply (erule (2) ensures [temp_use])
apply (force elim!: STL4E [temp_use])
done
lemma EnsuresInfinite:
"⟦ sigma ⊨ □◇P; sigma ⊨ □A; ⊢ A ∧ $P ⟶ Q` ⟧ ⟹ sigma ⊨ □◇Q"
apply (erule leadsto_infinite [temp_use])
apply (erule EnsuresLeadsto [temp_use])
apply assumption
done
section "Lattice rules"
lemma LatticeReflexivity: "⊢ F ↝ F"
apply (unfold leadsto_def)
apply (rule necT InitDmd_gen)+
done
lemma LatticeTransitivity: "⊢ (G ↝ H) ∧ (F ↝ G) ⟶ (F ↝ H)"
apply (unfold leadsto_def)
apply clarsimp
apply (erule dup_boxE)
apply merge_box
apply (clarsimp elim!: STL4E [temp_use])
apply (rule dup_dmdD)
apply (subgoal_tac "sigmaa ⊨ ◇Init G")
apply (erule DmdImpl2)
apply assumption
apply (simp add: dmdInitD)
done
lemma LatticeDisjunctionElim1: "⊢ (F ∨ G ↝ H) ⟶ (F ↝ H)"
apply (unfold leadsto_def)
apply (auto simp: Init_simps elim!: STL4E [temp_use])
done
lemma LatticeDisjunctionElim2: "⊢ (F ∨ G ↝ H) ⟶ (G ↝ H)"
apply (unfold leadsto_def)
apply (auto simp: Init_simps elim!: STL4E [temp_use])
done
lemma LatticeDisjunctionIntro: "⊢ (F ↝ H) ∧ (G ↝ H) ⟶ (F ∨ G ↝ H)"
apply (unfold leadsto_def)
apply clarsimp
apply merge_box
apply (auto simp: Init_simps elim!: STL4E [temp_use])
done
lemma LatticeDisjunction: "⊢ (F ∨ G ↝ H) = ((F ↝ H) ∧ (G ↝ H))"
by (auto intro: LatticeDisjunctionIntro [temp_use]
LatticeDisjunctionElim1 [temp_use]
LatticeDisjunctionElim2 [temp_use])
lemma LatticeDiamond: "⊢ (A ↝ B ∨ C) ∧ (B ↝ D) ∧ (C ↝ D) ⟶ (A ↝ D)"
apply clarsimp
apply (subgoal_tac "sigma ⊨ (B ∨ C) ↝ D")
apply (erule_tac G = "LIFT (B ∨ C)" in LatticeTransitivity [temp_use])
apply (fastforce intro!: LatticeDisjunctionIntro [temp_use])+
done
lemma LatticeTriangle: "⊢ (A ↝ D ∨ B) ∧ (B ↝ D) ⟶ (A ↝ D)"
apply clarsimp
apply (subgoal_tac "sigma ⊨ (D ∨ B) ↝ D")
apply (erule_tac G = "LIFT (D ∨ B)" in LatticeTransitivity [temp_use])
apply assumption
apply (auto intro: LatticeDisjunctionIntro [temp_use] LatticeReflexivity [temp_use])
done
lemma LatticeTriangle2: "⊢ (A ↝ B ∨ D) ∧ (B ↝ D) ⟶ (A ↝ D)"
apply clarsimp
apply (subgoal_tac "sigma ⊨ B ∨ D ↝ D")
apply (erule_tac G = "LIFT (B ∨ D)" in LatticeTransitivity [temp_use])
apply assumption
apply (auto intro: LatticeDisjunctionIntro [temp_use] LatticeReflexivity [temp_use])
done
section "Fairness rules"
lemma WF1:
"⟦ ⊢ $P ∧ N ⟶ P` ∨ Q`;
⊢ ($P ∧ N) ∧ <A>_v ⟶ Q`;
⊢ $P ∧ N ⟶ $(Enabled(<A>_v)) ⟧
⟹ ⊢ □N ∧ WF(A)_v ⟶ (P ↝ Q)"
apply (clarsimp dest!: BoxWFI [temp_use])
apply (erule (2) ensures [temp_use])
apply (erule (1) STL4Edup)
apply (clarsimp simp: WF_def)
apply (rule STL2 [temp_use])
apply (clarsimp elim!: mp intro!: InitDmd [temp_use])
apply (erule STL4 [temp_use, THEN box_stp_actD [temp_use]])
apply (simp add: split_box_conj box_stp_actI)
done
lemma WF_leadsto:
assumes 1: "⊢ N ∧ $P ⟶ $Enabled (<A>_v)"
and 2: "⊢ N ∧ <A>_v ⟶ B"
and 3: "⊢ □(N ∧ [¬A]_v) ⟶ stable P"
shows "⊢ □N ∧ WF(A)_v ⟶ (P ↝ B)"
apply (unfold leadsto_def)
apply (clarsimp dest!: BoxWFI [temp_use])
apply (erule (1) STL4Edup)
apply clarsimp
apply (rule 2 [THEN DmdImpl, temp_use])
apply (rule BoxDmd_simple [temp_use])
apply assumption
apply (rule classical)
apply (rule STL2 [temp_use])
apply (clarsimp simp: WF_def elim!: mp intro!: InitDmd [temp_use])
apply (rule 1 [THEN STL4, temp_use, THEN box_stp_actD])
apply (simp (no_asm_simp) add: split_box_conj [try_rewrite] box_stp_act [try_rewrite])
apply (erule INV1 [temp_use])
apply (rule 3 [temp_use])
apply (simp add: split_box_conj [try_rewrite] NotDmd [temp_use] not_angle [try_rewrite])
done
lemma SF1:
"⟦ ⊢ $P ∧ N ⟶ P` ∨ Q`;
⊢ ($P ∧ N) ∧ <A>_v ⟶ Q`;
⊢ □P ∧ □N ∧ □F ⟶ ◇Enabled(<A>_v) ⟧
⟹ ⊢ □N ∧ SF(A)_v ∧ □F ⟶ (P ↝ Q)"
apply (clarsimp dest!: BoxSFI [temp_use])
apply (erule (2) ensures [temp_use])
apply (erule_tac F = F in dup_boxE)
apply merge_temp_box
apply (erule STL4Edup)
apply assumption
apply (clarsimp simp: SF_def)
apply (rule STL2 [temp_use])
apply (erule mp)
apply (erule STL4 [temp_use])
apply (simp add: split_box_conj [try_rewrite] STL3 [try_rewrite])
done
lemma WF2:
assumes 1: "⊢ N ∧ <B>_f ⟶ <M>_g"
and 2: "⊢ $P ∧ P` ∧ <N ∧ A>_f ⟶ B"
and 3: "⊢ P ∧ Enabled(<M>_g) ⟶ Enabled(<A>_f)"
and 4: "⊢ □(N ∧ [¬B]_f) ∧ WF(A)_f ∧ □F ∧ ◇□Enabled(<M>_g) ⟶ ◇□P"
shows "⊢ □N ∧ WF(A)_f ∧ □F ⟶ WF(M)_g"
apply (clarsimp dest!: BoxWFI [temp_use] BoxDmdBox [temp_use, THEN iffD2]
simp: WF_def [where A = M])
apply (erule_tac F = F in dup_boxE)
apply merge_temp_box
apply (erule STL4Edup)
apply assumption
apply (clarsimp intro!: BoxDmd_simple [temp_use, THEN 1 [THEN DmdImpl, temp_use]])
apply (rule classical)
apply (subgoal_tac "sigmaa ⊨ ◇ (($P ∧ P` ∧ N) ∧ <A>_f)")
apply (force simp: angle_def intro!: 2 [temp_use] elim!: DmdImplE [temp_use])
apply (rule BoxDmd_simple [THEN DmdImpl, unfolded DmdDmd [temp_rewrite], temp_use])
apply (simp add: NotDmd [temp_use] not_angle [try_rewrite])
apply merge_act_box
apply (frule 4 [temp_use])
apply assumption+
apply (drule STL6 [temp_use])
apply assumption
apply (erule_tac V = "sigmaa ⊨ ◇□P" in thin_rl)
apply (erule_tac V = "sigmaa ⊨ □F" in thin_rl)
apply (drule BoxWFI [temp_use])
apply (erule_tac F = "ACT N ∧ [¬B]_f" in dup_boxE)
apply merge_temp_box
apply (erule DmdImpldup)
apply assumption
apply (auto simp: split_box_conj [try_rewrite] STL3 [try_rewrite]
WF_Box [try_rewrite] box_stp_act [try_rewrite])
apply (force elim!: TLA2E [where P = P, temp_use])
apply (rule STL2 [temp_use])
apply (force simp: WF_def split_box_conj [try_rewrite]
elim!: mp intro!: InitDmd [temp_use] 3 [THEN STL4, temp_use])
done
lemma SF2:
assumes 1: "⊢ N ∧ <B>_f ⟶ <M>_g"
and 2: "⊢ $P ∧ P` ∧ <N ∧ A>_f ⟶ B"
and 3: "⊢ P ∧ Enabled(<M>_g) ⟶ Enabled(<A>_f)"
and 4: "⊢ □(N ∧ [¬B]_f) ∧ SF(A)_f ∧ □F ∧ □◇Enabled(<M>_g) ⟶ ◇□P"
shows "⊢ □N ∧ SF(A)_f ∧ □F ⟶ SF(M)_g"
apply (clarsimp dest!: BoxSFI [temp_use] simp: 2 [try_rewrite] SF_def [where A = M])
apply (erule_tac F = F in dup_boxE)
apply (erule_tac F = "TEMP ◇Enabled (<M>_g) " in dup_boxE)
apply merge_temp_box
apply (erule STL4Edup)
apply assumption
apply (clarsimp intro!: BoxDmd_simple [temp_use, THEN 1 [THEN DmdImpl, temp_use]])
apply (rule classical)
apply (subgoal_tac "sigmaa ⊨ ◇ (($P ∧ P` ∧ N) ∧ <A>_f)")
apply (force simp: angle_def intro!: 2 [temp_use] elim!: DmdImplE [temp_use])
apply (rule BoxDmd_simple [THEN DmdImpl, unfolded DmdDmd [temp_rewrite], temp_use])
apply (simp add: NotDmd [temp_use] not_angle [try_rewrite])
apply merge_act_box
apply (frule 4 [temp_use])
apply assumption+
apply (erule_tac V = "sigmaa ⊨ □F" in thin_rl)
apply (drule BoxSFI [temp_use])
apply (erule_tac F = "TEMP ◇Enabled (<M>_g)" in dup_boxE)
apply (erule_tac F = "ACT N ∧ [¬B]_f" in dup_boxE)
apply merge_temp_box
apply (erule DmdImpldup)
apply assumption
apply (auto simp: split_box_conj [try_rewrite] STL3 [try_rewrite]
SF_Box [try_rewrite] box_stp_act [try_rewrite])
apply (force elim!: TLA2E [where P = P, temp_use])
apply (rule STL2 [temp_use])
apply (force simp: SF_def split_box_conj [try_rewrite]
elim!: mp InfImpl [temp_use] intro!: 3 [temp_use])
done
section "Well-founded orderings"
lemma wf_leadsto:
assumes 1: "wf r"
and 2: "⋀x. sigma ⊨ F x ↝ (G ∨ (∃y. #((y,x)∈r) ∧ F y)) "
shows "sigma ⊨ F x ↝ G"
apply (rule 1 [THEN wf_induct])
apply (rule LatticeTriangle [temp_use])
apply (rule 2)
apply (auto simp: leadsto_exists [try_rewrite])
apply (case_tac "(y,x) ∈ r")
apply force
apply (force simp: leadsto_def Init_simps intro!: necT [temp_use])
done
lemma wf_not_box_decrease: "⋀r. wf r ⟹ ⊢ □[ (v`, $v) ∈ #r ]_v ⟶ ◇□[#False]_v"
apply clarsimp
apply (rule ccontr)
apply (subgoal_tac "sigma ⊨ (∃x. v=#x) ↝ #False")
apply (drule leadsto_false [temp_use, THEN iffD1, THEN STL2_gen [temp_use]])
apply (force simp: Init_defs)
apply (clarsimp simp: leadsto_exists [try_rewrite] not_square [try_rewrite] more_temp_simps)
apply (erule wf_leadsto)
apply (rule ensures_simple [temp_use])
apply (auto simp: square_def angle_def)
done
lemmas wf_not_dmd_box_decrease =
wf_not_box_decrease [THEN DmdImpl, unfolded more_temp_simps]
lemma wf_box_dmd_decrease:
assumes 1: "wf r"
shows "⊢ □◇((v`, $v) ∈ #r) ⟶ □◇<(v`, $v) ∉ #r>_v"
apply clarsimp
apply (rule ccontr)
apply (simp add: not_angle [try_rewrite] more_temp_simps)
apply (drule 1 [THEN wf_not_dmd_box_decrease [temp_use]])
apply (drule BoxDmdDmdBox [temp_use])
apply assumption
apply (subgoal_tac "sigma ⊨ □◇ ((#False) ::action)")
apply force
apply (erule STL4E)
apply (rule DmdImpl)
apply (force intro: 1 [THEN wf_irrefl, temp_use])
done
lemma nat_box_dmd_decrease: "⋀n::nat stfun. ⊢ □◇(n` < $n) ⟶ □◇($n < n`)"
apply clarsimp
apply (subgoal_tac "sigma ⊨ □◇<¬ ((n`,$n) ∈ #less_than)>_n")
apply (erule thin_rl)
apply (erule STL4E)
apply (rule DmdImpl)
apply (clarsimp simp: angle_def [try_rewrite])
apply (rule wf_box_dmd_decrease [temp_use])
apply (auto elim!: STL4E [temp_use] DmdImplE [temp_use])
done
section "Flexible quantification"
lemma aallI:
assumes 1: "basevars vs"
and 2: "(⋀x. basevars (x,vs) ⟹ sigma ⊨ F x)"
shows "sigma ⊨ (∀∀x. F x)"
by (auto simp: aall_def elim!: eexE [temp_use] intro!: 1 dest!: 2 [temp_use])
lemma aallE: "⊢ (∀∀x. F x) ⟶ F x"
apply (unfold aall_def)
apply clarsimp
apply (erule contrapos_np)
apply (force intro!: eexI [temp_use])
done
lemma eex_mono:
assumes 1: "sigma ⊨ ∃∃x. F x"
and 2: "⋀x. sigma ⊨ F x ⟶ G x"
shows "sigma ⊨ ∃∃x. G x"
apply (rule unit_base [THEN 1 [THEN eexE]])
apply (rule eexI [temp_use])
apply (erule 2 [unfolded intensional_rews, THEN mp])
done
lemma aall_mono:
assumes 1: "sigma ⊨ ∀∀x. F(x)"
and 2: "⋀x. sigma ⊨ F(x) ⟶ G(x)"
shows "sigma ⊨ ∀∀x. G(x)"
apply (rule unit_base [THEN aallI])
apply (rule 2 [unfolded intensional_rews, THEN mp])
apply (rule 1 [THEN aallE [temp_use]])
done
lemma historyI:
assumes 1: "sigma ⊨ Init I"
and 2: "sigma ⊨ □N"
and 3: "basevars vs"
and 4: "⋀h. basevars(h,vs) ⟹ ⊢ I ∧ h = ha ⟶ HI h"
and 5: "⋀h s t. ⟦ basevars(h,vs); N (s,t); h t = hb (h s) (s,t) ⟧ ⟹ HN h (s,t)"
shows "sigma ⊨ ∃∃h. Init (HI h) ∧ □(HN h)"
apply (rule history [temp_use, THEN eexE])
apply (rule 3)
apply (rule eexI [temp_use])
apply clarsimp
apply (rule conjI)
prefer 2
apply (insert 2)
apply merge_box
apply (force elim!: STL4E [temp_use] 5 [temp_use])
apply (insert 1)
apply (force simp: Init_defs elim!: 4 [temp_use])
done
lemma "⊢ ∃∃h. Init(h = #True) ∧ □(h` = (¬$h))"
apply (rule tempI)
apply (rule historyI)
apply (force simp: Init_defs intro!: unit_base [temp_use] necT [temp_use])+
done
end