Theory HOL.Random_Sequence
section ‹Various kind of sequences inside the random monad›
theory Random_Sequence
imports Random_Pred
begin
type_synonym 'a random_dseq = "natural ⇒ natural ⇒ Random.seed ⇒ ('a Limited_Sequence.dseq × Random.seed)"
definition empty :: "'a random_dseq"
where
"empty = (%nrandom size. Pair (Limited_Sequence.empty))"
definition single :: "'a => 'a random_dseq"
where
"single x = (%nrandom size. Pair (Limited_Sequence.single x))"
definition bind :: "'a random_dseq => ('a ⇒ 'b random_dseq) ⇒ 'b random_dseq"
where
"bind R f = (λnrandom size s. let
(P, s') = R nrandom size s;
(s1, s2) = Random.split_seed s'
in (Limited_Sequence.bind P (%a. fst (f a nrandom size s1)), s2))"
definition union :: "'a random_dseq => 'a random_dseq => 'a random_dseq"
where
"union R1 R2 = (λnrandom size s. let
(S1, s') = R1 nrandom size s; (S2, s'') = R2 nrandom size s'
in (Limited_Sequence.union S1 S2, s''))"
definition if_random_dseq :: "bool => unit random_dseq"
where
"if_random_dseq b = (if b then single () else empty)"
definition not_random_dseq :: "unit random_dseq => unit random_dseq"
where
"not_random_dseq R = (λnrandom size s. let
(S, s') = R nrandom size s
in (Limited_Sequence.not_seq S, s'))"
definition map :: "('a => 'b) => 'a random_dseq => 'b random_dseq"
where
"map f P = bind P (single ∘ f)"
fun Random :: "(natural ⇒ Random.seed ⇒ (('a × (unit ⇒ term)) × Random.seed)) ⇒ 'a random_dseq"
where
"Random g nrandom = (%size. if nrandom <= 0 then (Pair Limited_Sequence.empty) else
(scomp (g size) (%r. scomp (Random g (nrandom - 1) size) (%rs. Pair (Limited_Sequence.union (Limited_Sequence.single (fst r)) rs)))))"
type_synonym 'a pos_random_dseq = "natural ⇒ natural ⇒ Random.seed ⇒ 'a Limited_Sequence.pos_dseq"
definition pos_empty :: "'a pos_random_dseq"
where
"pos_empty = (%nrandom size seed. Limited_Sequence.pos_empty)"
definition pos_single :: "'a => 'a pos_random_dseq"
where
"pos_single x = (%nrandom size seed. Limited_Sequence.pos_single x)"
definition pos_bind :: "'a pos_random_dseq => ('a ⇒ 'b pos_random_dseq) ⇒ 'b pos_random_dseq"
where
"pos_bind R f = (λnrandom size seed. Limited_Sequence.pos_bind (R nrandom size seed) (%a. f a nrandom size seed))"
definition pos_decr_bind :: "'a pos_random_dseq => ('a ⇒ 'b pos_random_dseq) ⇒ 'b pos_random_dseq"
where
"pos_decr_bind R f = (λnrandom size seed. Limited_Sequence.pos_decr_bind (R nrandom size seed) (%a. f a nrandom size seed))"
definition pos_union :: "'a pos_random_dseq => 'a pos_random_dseq => 'a pos_random_dseq"
where
"pos_union R1 R2 = (λnrandom size seed. Limited_Sequence.pos_union (R1 nrandom size seed) (R2 nrandom size seed))"
definition pos_if_random_dseq :: "bool => unit pos_random_dseq"
where
"pos_if_random_dseq b = (if b then pos_single () else pos_empty)"
definition pos_iterate_upto :: "(natural => 'a) => natural => natural => 'a pos_random_dseq"
where
"pos_iterate_upto f n m = (λnrandom size seed. Limited_Sequence.pos_iterate_upto f n m)"
definition pos_map :: "('a => 'b) => 'a pos_random_dseq => 'b pos_random_dseq"
where
"pos_map f P = pos_bind P (pos_single ∘ f)"
fun iter :: "(Random.seed ⇒ ('a × (unit ⇒ term)) × Random.seed)
⇒ natural ⇒ Random.seed ⇒ 'a Lazy_Sequence.lazy_sequence"
where
"iter random nrandom seed =
(if nrandom = 0 then Lazy_Sequence.empty else Lazy_Sequence.Lazy_Sequence (%u. let ((x, _), seed') = random seed in Some (x, iter random (nrandom - 1) seed')))"
definition pos_Random :: "(natural ⇒ Random.seed ⇒ ('a × (unit ⇒ term)) × Random.seed)
⇒ 'a pos_random_dseq"
where
"pos_Random g = (%nrandom size seed depth. iter (g size) nrandom seed)"
type_synonym 'a neg_random_dseq = "natural ⇒ natural ⇒ Random.seed ⇒ 'a Limited_Sequence.neg_dseq"
definition neg_empty :: "'a neg_random_dseq"
where
"neg_empty = (%nrandom size seed. Limited_Sequence.neg_empty)"
definition neg_single :: "'a => 'a neg_random_dseq"
where
"neg_single x = (%nrandom size seed. Limited_Sequence.neg_single x)"
definition neg_bind :: "'a neg_random_dseq => ('a ⇒ 'b neg_random_dseq) ⇒ 'b neg_random_dseq"
where
"neg_bind R f = (λnrandom size seed. Limited_Sequence.neg_bind (R nrandom size seed) (%a. f a nrandom size seed))"
definition neg_decr_bind :: "'a neg_random_dseq => ('a ⇒ 'b neg_random_dseq) ⇒ 'b neg_random_dseq"
where
"neg_decr_bind R f = (λnrandom size seed. Limited_Sequence.neg_decr_bind (R nrandom size seed) (%a. f a nrandom size seed))"
definition neg_union :: "'a neg_random_dseq => 'a neg_random_dseq => 'a neg_random_dseq"
where
"neg_union R1 R2 = (λnrandom size seed. Limited_Sequence.neg_union (R1 nrandom size seed) (R2 nrandom size seed))"
definition neg_if_random_dseq :: "bool => unit neg_random_dseq"
where
"neg_if_random_dseq b = (if b then neg_single () else neg_empty)"
definition neg_iterate_upto :: "(natural => 'a) => natural => natural => 'a neg_random_dseq"
where
"neg_iterate_upto f n m = (λnrandom size seed. Limited_Sequence.neg_iterate_upto f n m)"
definition neg_not_random_dseq :: "unit pos_random_dseq => unit neg_random_dseq"
where
"neg_not_random_dseq R = (λnrandom size seed. Limited_Sequence.neg_not_seq (R nrandom size seed))"
definition neg_map :: "('a => 'b) => 'a neg_random_dseq => 'b neg_random_dseq"
where
"neg_map f P = neg_bind P (neg_single ∘ f)"
definition pos_not_random_dseq :: "unit neg_random_dseq => unit pos_random_dseq"
where
"pos_not_random_dseq R = (λnrandom size seed. Limited_Sequence.pos_not_seq (R nrandom size seed))"
hide_const (open)
empty single bind union if_random_dseq not_random_dseq map Random
pos_empty pos_single pos_bind pos_decr_bind pos_union pos_if_random_dseq pos_iterate_upto
pos_not_random_dseq pos_map iter pos_Random
neg_empty neg_single neg_bind neg_decr_bind neg_union neg_if_random_dseq neg_iterate_upto
neg_not_random_dseq neg_map
hide_fact (open) empty_def single_def bind_def union_def if_random_dseq_def not_random_dseq_def
map_def Random.simps
pos_empty_def pos_single_def pos_bind_def pos_decr_bind_def pos_union_def pos_if_random_dseq_def
pos_iterate_upto_def pos_not_random_dseq_def pos_map_def iter.simps pos_Random_def
neg_empty_def neg_single_def neg_bind_def neg_decr_bind_def neg_union_def neg_if_random_dseq_def
neg_iterate_upto_def neg_not_random_dseq_def neg_map_def
end