Theory HOL.Limited_Sequence


(* Author: Lukas Bulwahn, TU Muenchen *)

section ‹Depth-Limited Sequences with failure element›

theory Limited_Sequence
imports Lazy_Sequence
begin

subsection ‹Depth-Limited Sequence›

type_synonym 'a dseq = "natural  bool  'a lazy_sequence option"

definition empty :: "'a dseq"
where
  "empty = (λ_ _. Some Lazy_Sequence.empty)"

definition single :: "'a  'a dseq"
where
  "single x = (λ_ _. Some (Lazy_Sequence.single x))"

definition eval :: "'a dseq  natural  bool  'a lazy_sequence option"
where
  [simp]: "eval f i pol = f i pol"

definition yield :: "'a dseq  natural  bool  ('a × 'a dseq) option" 
where
  "yield f i pol = (case eval f i pol of
    None  None
  | Some s  (map_option  apsnd) (λr _ _. Some r) (Lazy_Sequence.yield s))"

definition map_seq :: "('a  'b dseq)  'a lazy_sequence  'b dseq"
where
  "map_seq f xq i pol = map_option Lazy_Sequence.flat
    (Lazy_Sequence.those (Lazy_Sequence.map (λx. f x i pol) xq))"

lemma map_seq_code [code]:
  "map_seq f xq i pol = (case Lazy_Sequence.yield xq of
    None  Some Lazy_Sequence.empty
  | Some (x, xq')  (case eval (f x) i pol of
      None  None
    | Some yq  (case map_seq f xq' i pol of
        None  None
      | Some zq  Some (Lazy_Sequence.append yq zq))))"
  by (cases xq)
    (auto simp add: map_seq_def Lazy_Sequence.those_def lazy_sequence_eq_iff split: list.splits option.splits)

definition bind :: "'a dseq  ('a  'b dseq)  'b dseq"
where
  "bind x f = (λi pol. 
     if i = 0 then
       (if pol then Some Lazy_Sequence.empty else None)
     else
       (case x (i - 1) pol of
         None  None
       | Some xq  map_seq f xq i pol))"

definition union :: "'a dseq  'a dseq  'a dseq"
where
  "union x y = (λi pol. case (x i pol, y i pol) of
      (Some xq, Some yq)  Some (Lazy_Sequence.append xq yq)
    | _  None)"

definition if_seq :: "bool  unit dseq"
where
  "if_seq b = (if b then single () else empty)"

definition not_seq :: "unit dseq  unit dseq"
where
  "not_seq x = (λi pol. case x i (¬ pol) of
    None  Some Lazy_Sequence.empty
  | Some xq  (case Lazy_Sequence.yield xq of
      None  Some (Lazy_Sequence.single ())
    | Some _  Some (Lazy_Sequence.empty)))"

definition map :: "('a  'b)  'a dseq  'b dseq"
where
  "map f g = (λi pol. case g i pol of
     None  None
   | Some xq  Some (Lazy_Sequence.map f xq))"


subsection ‹Positive Depth-Limited Sequence›

type_synonym 'a pos_dseq = "natural  'a Lazy_Sequence.lazy_sequence"

definition pos_empty :: "'a pos_dseq"
where
  "pos_empty = (λi. Lazy_Sequence.empty)"

definition pos_single :: "'a  'a pos_dseq"
where
  "pos_single x = (λi. Lazy_Sequence.single x)"

definition pos_bind :: "'a pos_dseq  ('a  'b pos_dseq)  'b pos_dseq"
where
  "pos_bind x f = (λi. Lazy_Sequence.bind (x i) (λa. f a i))"

definition pos_decr_bind :: "'a pos_dseq  ('a  'b pos_dseq)  'b pos_dseq"
where
  "pos_decr_bind x f = (λi. 
     if i = 0 then
       Lazy_Sequence.empty
     else
       Lazy_Sequence.bind (x (i - 1)) (λa. f a i))"

definition pos_union :: "'a pos_dseq  'a pos_dseq  'a pos_dseq"
where
  "pos_union xq yq = (λi. Lazy_Sequence.append (xq i) (yq i))"

definition pos_if_seq :: "bool  unit pos_dseq"
where
  "pos_if_seq b = (if b then pos_single () else pos_empty)"

definition pos_iterate_upto :: "(natural  'a)  natural  natural  'a pos_dseq"
where
  "pos_iterate_upto f n m = (λi. Lazy_Sequence.iterate_upto f n m)"
 
definition pos_map :: "('a  'b)  'a pos_dseq  'b pos_dseq"
where
  "pos_map f xq = (λi. Lazy_Sequence.map f (xq i))"


subsection ‹Negative Depth-Limited Sequence›

type_synonym 'a neg_dseq = "natural  'a Lazy_Sequence.hit_bound_lazy_sequence"

definition neg_empty :: "'a neg_dseq"
where
  "neg_empty = (λi. Lazy_Sequence.empty)"

definition neg_single :: "'a  'a neg_dseq"
where
  "neg_single x = (λi. Lazy_Sequence.hb_single x)"

definition neg_bind :: "'a neg_dseq  ('a  'b neg_dseq)  'b neg_dseq"
where
  "neg_bind x f = (λi. hb_bind (x i) (λa. f a i))"

definition neg_decr_bind :: "'a neg_dseq  ('a  'b neg_dseq)  'b neg_dseq"
where
  "neg_decr_bind x f = (λi. 
     if i = 0 then
       Lazy_Sequence.hit_bound
     else
       hb_bind (x (i - 1)) (λa. f a i))"

definition neg_union :: "'a neg_dseq  'a neg_dseq  'a neg_dseq"
where
  "neg_union x y = (λi. Lazy_Sequence.append (x i) (y i))"

definition neg_if_seq :: "bool  unit neg_dseq"
where
  "neg_if_seq b = (if b then neg_single () else neg_empty)"

definition neg_iterate_upto 
where
  "neg_iterate_upto f n m = (λi. Lazy_Sequence.iterate_upto (λi. Some (f i)) n m)"

definition neg_map :: "('a  'b)  'a neg_dseq  'b neg_dseq"
where
  "neg_map f xq = (λi. Lazy_Sequence.hb_map f (xq i))"


subsection ‹Negation›

definition pos_not_seq :: "unit neg_dseq  unit pos_dseq"
where
  "pos_not_seq xq = (λi. Lazy_Sequence.hb_not_seq (xq (3 * i)))"

definition neg_not_seq :: "unit pos_dseq  unit neg_dseq"
where
  "neg_not_seq x = (λi. case Lazy_Sequence.yield (x i) of
    None  Lazy_Sequence.hb_single ()
  | Some ((), xq)  Lazy_Sequence.empty)"


ML signature LIMITED_SEQUENCE =
sig
  type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option
  val map : ('a -> 'b) -> 'a dseq -> 'b dseq
  val yield : 'a dseq -> Code_Numeral.natural -> bool -> ('a * 'a dseq) option
  val yieldn : int -> 'a dseq -> Code_Numeral.natural -> bool -> 'a list * 'a dseq
end;

structure Limited_Sequence : LIMITED_SEQUENCE =
struct

type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option

fun map f = @{code Limited_Sequence.map} f;

fun yield f = @{code Limited_Sequence.yield} f;

fun yieldn n f i pol = (case f i pol of
    NONE => ([], fn _ => fn _ => NONE)
  | SOME s => let val (xs, s') = Lazy_Sequence.yieldn n s in (xs, fn _ => fn _ => SOME s') end);

end;

code_reserved Eval Limited_Sequence


hide_const (open) yield empty single eval map_seq bind union if_seq not_seq map
  pos_empty pos_single pos_bind pos_decr_bind pos_union pos_if_seq pos_iterate_upto pos_not_seq pos_map
  neg_empty neg_single neg_bind neg_decr_bind neg_union neg_if_seq neg_iterate_upto neg_not_seq neg_map

hide_fact (open) yield_def empty_def single_def eval_def map_seq_def bind_def union_def
  if_seq_def not_seq_def map_def
  pos_empty_def pos_single_def pos_bind_def pos_union_def pos_if_seq_def pos_iterate_upto_def pos_not_seq_def pos_map_def
  neg_empty_def neg_single_def neg_bind_def neg_union_def neg_if_seq_def neg_iterate_upto_def neg_not_seq_def neg_map_def

end