Theory Correctness
section ‹Correctness Proof›
theory Correctness
imports IOA.SimCorrectness Spec Impl
begin
default_sort type
definition
sim_relation :: "((nat * bool) * (nat set * bool)) set" where
"sim_relation = {qua. let c = fst qua; a = snd qua ;
k = fst c; b = snd c;
used = fst a; c = snd a
in
(∀l∈used. l < k) ∧ b=c}"
declare split_paired_Ex [simp del]
lemma issimulation:
"is_simulation sim_relation impl_ioa spec_ioa"
apply (simp (no_asm) add: is_simulation_def)
apply (rule conjI)
txt ‹start states›
apply (auto)[1]
apply (rule_tac x = " ({},False) " in exI)
apply (simp add: sim_relation_def starts_of_def spec_ioa_def impl_ioa_def)
txt ‹main-part›
apply (rule allI)+
apply (rule imp_conj_lemma)
apply (rename_tac k b used c k' b' a)
apply (induct_tac "a")
apply (simp_all (no_asm) add: sim_relation_def impl_ioa_def impl_trans_def trans_of_def)
apply auto
txt ‹NEW›
apply (rule_tac x = "(used,True)" in exI)
apply simp
apply (rule transition_is_ex)
apply (simp (no_asm) add: spec_ioa_def spec_trans_def trans_of_def)
txt ‹LOC›
apply (rule_tac x = " (used Un {k},False) " in exI)
apply (simp add: less_SucI)
apply (rule transition_is_ex)
apply (simp (no_asm) add: spec_ioa_def spec_trans_def trans_of_def)
apply fast
txt ‹FREE›
apply (rename_tac nat, rule_tac x = " (used - {nat},c) " in exI)
apply simp
apply (rule transition_is_ex)
apply (simp (no_asm) add: spec_ioa_def spec_trans_def trans_of_def)
done
lemma implementation:
"impl_ioa =<| spec_ioa"
apply (unfold ioa_implements_def)
apply (rule conjI)
apply (simp (no_asm) add: impl_sig_def spec_sig_def impl_ioa_def spec_ioa_def
asig_outputs_def asig_of_def asig_inputs_def)
apply (rule trace_inclusion_for_simulations)
apply (simp (no_asm) add: impl_sig_def spec_sig_def impl_ioa_def spec_ioa_def
externals_def asig_outputs_def asig_of_def asig_inputs_def)
apply (rule issimulation)
done
end