Theory Traces
section ‹Executions and Traces of I/O automata in HOLCF›
theory Traces
imports Sequence Automata
begin
default_sort type
type_synonym ('a, 's) pairs = "('a × 's) Seq"
type_synonym ('a, 's) execution = "'s × ('a, 's) pairs"
type_synonym 'a trace = "'a Seq"
type_synonym ('a, 's) execution_module = "('a, 's) execution set × 'a signature"
type_synonym 'a schedule_module = "'a trace set × 'a signature"
type_synonym 'a trace_module = "'a trace set × 'a signature"
subsection ‹Executions›
definition is_exec_fragC :: "('a, 's) ioa ⇒ ('a, 's) pairs → 's ⇒ tr"
where "is_exec_fragC A =
(fix ⋅
(LAM h ex.
(λs.
case ex of
nil ⇒ TT
| x ## xs ⇒ flift1 (λp. Def ((s, p) ∈ trans_of A) andalso (h ⋅ xs) (snd p)) ⋅ x)))"
definition is_exec_frag :: "('a, 's) ioa ⇒ ('a, 's) execution ⇒ bool"
where "is_exec_frag A ex ⟷ (is_exec_fragC A ⋅ (snd ex)) (fst ex) ≠ FF"
definition executions :: "('a, 's) ioa ⇒ ('a, 's) execution set"
where "executions ioa = {e. fst e ∈ starts_of ioa ∧ is_exec_frag ioa e}"
subsection ‹Schedules›
definition filter_act :: "('a, 's) pairs → 'a trace"
where "filter_act = Map fst"
definition has_schedule :: "('a, 's) ioa ⇒ 'a trace ⇒ bool"
where "has_schedule ioa sch ⟷ (∃ex ∈ executions ioa. sch = filter_act ⋅ (snd ex))"
definition schedules :: "('a, 's) ioa ⇒ 'a trace set"
where "schedules ioa = {sch. has_schedule ioa sch}"
subsection ‹Traces›
definition has_trace :: "('a, 's) ioa ⇒ 'a trace ⇒ bool"
where "has_trace ioa tr ⟷ (∃sch ∈ schedules ioa. tr = Filter (λa. a ∈ ext ioa) ⋅ sch)"
definition traces :: "('a, 's) ioa ⇒ 'a trace set"
where "traces ioa ≡ {tr. has_trace ioa tr}"
definition mk_trace :: "('a, 's) ioa ⇒ ('a, 's) pairs → 'a trace"
where "mk_trace ioa = (LAM tr. Filter (λa. a ∈ ext ioa) ⋅ (filter_act ⋅ tr))"
subsection ‹Fair Traces›
definition laststate :: "('a, 's) execution ⇒ 's"
where "laststate ex =
(case Last ⋅ (snd ex) of
UU ⇒ fst ex
| Def at ⇒ snd at)"
text ‹A predicate holds infinitely (finitely) often in a sequence.›
definition inf_often :: "('a ⇒ bool) ⇒ 'a Seq ⇒ bool"
where "inf_often P s ⟷ Infinite (Filter P ⋅ s)"
text ‹Filtering ‹P› yields a finite or partial sequence.›
definition fin_often :: "('a ⇒ bool) ⇒ 'a Seq ⇒ bool"
where "fin_often P s ⟷ ¬ inf_often P s"
subsection ‹Fairness of executions›
text ‹
Note that partial execs cannot be ‹wfair› as the inf_often predicate in the
else branch prohibits it. However they can be ‹sfair› in the case when all
‹W› are only finitely often enabled: Is this the right model?
See 🗏‹LiveIOA.thy› for solution conforming with the literature and
superseding this one.
›
definition is_wfair :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) execution ⇒ bool"
where "is_wfair A W ex ⟷
(inf_often (λx. fst x ∈ W) (snd ex) ∨
inf_often (λx. ¬ Enabled A W (snd x)) (snd ex))"
definition wfair_ex :: "('a, 's) ioa ⇒ ('a, 's) execution ⇒ bool"
where "wfair_ex A ex ⟷
(∀W ∈ wfair_of A.
if Finite (snd ex)
then ¬ Enabled A W (laststate ex)
else is_wfair A W ex)"
definition is_sfair :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) execution ⇒ bool"
where "is_sfair A W ex ⟷
(inf_often (λx. fst x ∈ W) (snd ex) ∨
fin_often (λx. Enabled A W (snd x)) (snd ex))"
definition sfair_ex :: "('a, 's)ioa ⇒ ('a, 's) execution ⇒ bool"
where "sfair_ex A ex ⟷
(∀W ∈ sfair_of A.
if Finite (snd ex)
then ¬ Enabled A W (laststate ex)
else is_sfair A W ex)"
definition fair_ex :: "('a, 's) ioa ⇒ ('a, 's) execution ⇒ bool"
where "fair_ex A ex ⟷ wfair_ex A ex ∧ sfair_ex A ex"
text ‹Fair behavior sets.›
definition fairexecutions :: "('a, 's) ioa ⇒ ('a, 's) execution set"
where "fairexecutions A = {ex. ex ∈ executions A ∧ fair_ex A ex}"
definition fairtraces :: "('a, 's) ioa ⇒ 'a trace set"
where "fairtraces A = {mk_trace A ⋅ (snd ex) | ex. ex ∈ fairexecutions A}"
subsection ‹Implementation›
subsubsection ‹Notions of implementation›
definition ioa_implements :: "('a, 's1) ioa ⇒ ('a, 's2) ioa ⇒ bool" (infixr "=<|" 12)
where "(ioa1 =<| ioa2) ⟷
(inputs (asig_of ioa1) = inputs (asig_of ioa2) ∧
outputs (asig_of ioa1) = outputs (asig_of ioa2)) ∧
traces ioa1 ⊆ traces ioa2"
definition fair_implements :: "('a, 's1) ioa ⇒ ('a, 's2) ioa ⇒ bool"
where "fair_implements C A ⟷
inp C = inp A ∧ out C = out A ∧ fairtraces C ⊆ fairtraces A"
lemma implements_trans: "A =<| B ⟹ B =<| C ⟹ A =<| C"
by (auto simp add: ioa_implements_def)
subsection ‹Modules›
subsubsection ‹Execution, schedule and trace modules›
definition Execs :: "('a, 's) ioa ⇒ ('a, 's) execution_module"
where "Execs A = (executions A, asig_of A)"
definition Scheds :: "('a, 's) ioa ⇒ 'a schedule_module"
where "Scheds A = (schedules A, asig_of A)"
definition Traces :: "('a, 's) ioa ⇒ 'a trace_module"
where "Traces A = (traces A, asig_of A)"
lemmas [simp del] = HOL.ex_simps HOL.all_simps split_paired_Ex
declare Let_def [simp]
setup ‹map_theory_claset (fn ctxt => ctxt delSWrapper "split_all_tac")›
lemmas exec_rws = executions_def is_exec_frag_def
subsection ‹Recursive equations of operators›
subsubsection ‹‹filter_act››
lemma filter_act_UU: "filter_act ⋅ UU = UU"
by (simp add: filter_act_def)
lemma filter_act_nil: "filter_act ⋅ nil = nil"
by (simp add: filter_act_def)
lemma filter_act_cons: "filter_act ⋅ (x ↝ xs) = fst x ↝ filter_act ⋅ xs"
by (simp add: filter_act_def)
declare filter_act_UU [simp] filter_act_nil [simp] filter_act_cons [simp]
subsubsection ‹‹mk_trace››
lemma mk_trace_UU: "mk_trace A ⋅ UU = UU"
by (simp add: mk_trace_def)
lemma mk_trace_nil: "mk_trace A ⋅ nil = nil"
by (simp add: mk_trace_def)
lemma mk_trace_cons:
"mk_trace A ⋅ (at ↝ xs) =
(if fst at ∈ ext A
then fst at ↝ mk_trace A ⋅ xs
else mk_trace A ⋅ xs)"
by (simp add: mk_trace_def)
declare mk_trace_UU [simp] mk_trace_nil [simp] mk_trace_cons [simp]
subsubsection ‹‹is_exec_fragC››
lemma is_exec_fragC_unfold:
"is_exec_fragC A =
(LAM ex.
(λs.
case ex of
nil ⇒ TT
| x ## xs ⇒
(flift1 (λp. Def ((s, p) ∈ trans_of A) andalso (is_exec_fragC A⋅xs) (snd p)) ⋅ x)))"
apply (rule trans)
apply (rule fix_eq4)
apply (rule is_exec_fragC_def)
apply (rule beta_cfun)
apply (simp add: flift1_def)
done
lemma is_exec_fragC_UU: "(is_exec_fragC A ⋅ UU) s = UU"
apply (subst is_exec_fragC_unfold)
apply simp
done
lemma is_exec_fragC_nil: "(is_exec_fragC A ⋅ nil) s = TT"
apply (subst is_exec_fragC_unfold)
apply simp
done
lemma is_exec_fragC_cons:
"(is_exec_fragC A ⋅ (pr ↝ xs)) s =
(Def ((s, pr) ∈ trans_of A) andalso (is_exec_fragC A ⋅ xs) (snd pr))"
apply (rule trans)
apply (subst is_exec_fragC_unfold)
apply (simp add: Consq_def flift1_def)
apply simp
done
declare is_exec_fragC_UU [simp] is_exec_fragC_nil [simp] is_exec_fragC_cons [simp]
subsubsection ‹‹is_exec_frag››
lemma is_exec_frag_UU: "is_exec_frag A (s, UU)"
by (simp add: is_exec_frag_def)
lemma is_exec_frag_nil: "is_exec_frag A (s, nil)"
by (simp add: is_exec_frag_def)
lemma is_exec_frag_cons:
"is_exec_frag A (s, (a, t) ↝ ex) ⟷ (s, a, t) ∈ trans_of A ∧ is_exec_frag A (t, ex)"
by (simp add: is_exec_frag_def)
declare is_exec_frag_UU [simp] is_exec_frag_nil [simp] is_exec_frag_cons [simp]
subsubsection ‹‹laststate››
lemma laststate_UU: "laststate (s, UU) = s"
by (simp add: laststate_def)
lemma laststate_nil: "laststate (s, nil) = s"
by (simp add: laststate_def)
lemma laststate_cons: "Finite ex ⟹ laststate (s, at ↝ ex) = laststate (snd at, ex)"
apply (simp add: laststate_def)
apply (cases "ex = nil")
apply simp
apply simp
apply (drule Finite_Last1 [THEN mp])
apply assumption
apply defined
done
declare laststate_UU [simp] laststate_nil [simp] laststate_cons [simp]
lemma exists_laststate: "Finite ex ⟹ ∀s. ∃u. laststate (s, ex) = u"
by Seq_Finite_induct
subsection ‹‹has_trace› ‹mk_trace››
lemma has_trace_def2: "has_trace A b ⟷ (∃ex ∈ executions A. b = mk_trace A ⋅ (snd ex))"
apply (unfold executions_def mk_trace_def has_trace_def schedules_def has_schedule_def [abs_def])
apply auto
done
subsection ‹Signatures and executions, schedules›
text ‹
All executions of ‹A› have only actions of ‹A›. This is only true because of
the predicate ‹state_trans› (part of the predicate ‹IOA›): We have no
dependent types. For executions of parallel automata this assumption is not
needed, as in ‹par_def› this condition is included once more. (See Lemmas
1.1.1c in CompoExecs for example.)
›
lemma execfrag_in_sig:
"is_trans_of A ⟹ ∀s. is_exec_frag A (s, xs) ⟶ Forall (λa. a ∈ act A) (filter_act ⋅ xs)"
apply (pair_induct xs simp: is_exec_frag_def Forall_def sforall_def)
text ‹main case›
apply (auto simp add: is_trans_of_def)
done
lemma exec_in_sig:
"is_trans_of A ⟹ x ∈ executions A ⟹ Forall (λa. a ∈ act A) (filter_act ⋅ (snd x))"
apply (simp add: executions_def)
apply (pair x)
apply (rule execfrag_in_sig [THEN spec, THEN mp])
apply auto
done
lemma scheds_in_sig: "is_trans_of A ⟹ x ∈ schedules A ⟹ Forall (λa. a ∈ act A) x"
apply (unfold schedules_def has_schedule_def [abs_def])
apply (fast intro!: exec_in_sig)
done
subsection ‹Executions are prefix closed›
lemma execfrag_prefixclosed: "∀x s. is_exec_frag A (s, x) ∧ y ⊑ x ⟶ is_exec_frag A (s, y)"
apply (pair_induct y simp: is_exec_frag_def)
apply (intro strip)
apply (Seq_case_simp x)
apply (pair a)
apply auto
done
lemmas exec_prefixclosed =
conjI [THEN execfrag_prefixclosed [THEN spec, THEN spec, THEN mp]]
lemma exec_prefix2closed [rule_format]:
"∀y s. is_exec_frag A (s, x @@ y) ⟶ is_exec_frag A (s, x)"
apply (pair_induct x simp: is_exec_frag_def)
apply (intro strip)
apply (Seq_case_simp s)
apply (pair a)
apply auto
done
end