Theory LiveIOA
section ‹Live I/O automata -- specified by temproal formulas›
theory LiveIOA
imports TLS
begin
default_sort type
type_synonym ('a, 's) live_ioa = "('a, 's)ioa × ('a, 's) ioa_temp"
definition validLIOA :: "('a, 's) live_ioa ⇒ ('a, 's) ioa_temp ⇒ bool"
where "validLIOA AL P ⟷ validIOA (fst AL) (snd AL ❙⟶ P)"
definition WF :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) ioa_temp"
where "WF A acts = (◇□⟨λ(s,a,t). Enabled A acts s⟩ ❙⟶ □◇⟨xt2 (plift (λa. a ∈ acts))⟩)"
definition SF :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) ioa_temp"
where "SF A acts = (□◇⟨λ(s,a,t). Enabled A acts s⟩ ❙⟶ □◇⟨xt2 (plift (λa. a ∈ acts))⟩)"
definition liveexecutions :: "('a, 's) live_ioa ⇒ ('a, 's) execution set"
where "liveexecutions AP = {exec. exec ∈ executions (fst AP) ∧ (exec ⊫ snd AP)}"
definition livetraces :: "('a, 's) live_ioa ⇒ 'a trace set"
where "livetraces AP = {mk_trace (fst AP) ⋅ (snd ex) |ex. ex ∈ liveexecutions AP}"
definition live_implements :: "('a, 's1) live_ioa ⇒ ('a, 's2) live_ioa ⇒ bool"
where "live_implements CL AM ⟷
inp (fst CL) = inp (fst AM) ∧ out (fst CL) = out (fst AM) ∧
livetraces CL ⊆ livetraces AM"
definition is_live_ref_map :: "('s1 ⇒ 's2) ⇒ ('a, 's1) live_ioa ⇒ ('a, 's2) live_ioa ⇒ bool"
where "is_live_ref_map f CL AM ⟷
is_ref_map f (fst CL ) (fst AM) ∧
(∀exec ∈ executions (fst CL). (exec ⊫ (snd CL)) ⟶
(corresp_ex (fst AM) f exec ⊫ snd AM))"
lemma live_implements_trans:
"live_implements (A, LA) (B, LB) ⟹ live_implements (B, LB) (C, LC) ⟹
live_implements (A, LA) (C, LC)"
by (auto simp: live_implements_def)
subsection ‹Correctness of live refmap›
lemma live_implements:
"inp C = inp A ⟹ out C = out A ⟹ is_live_ref_map f (C, M) (A, L)
⟹ live_implements (C, M) (A, L)"
apply (simp add: is_live_ref_map_def live_implements_def livetraces_def liveexecutions_def)
apply auto
apply (rule_tac x = "corresp_ex A f ex" in exI)
apply auto
text ‹Traces coincide, Lemma 1›
apply (pair ex)
apply (erule lemma_1 [THEN spec, THEN mp])
apply (simp (no_asm) add: externals_def)
apply (auto)[1]
apply (simp add: executions_def reachable.reachable_0)
text ‹‹corresp_ex› is execution, Lemma 2›
apply (pair ex)
apply (simp add: executions_def)
text ‹start state›
apply (rule conjI)
apply (simp add: is_ref_map_def corresp_ex_def)
text ‹‹is_execution_fragment››
apply (erule lemma_2 [THEN spec, THEN mp])
apply (simp add: reachable.reachable_0)
done
end