Theory Impl
section ‹The implementation of a memory›
theory Impl
imports IOA.IOA Action
begin
definition
impl_sig :: "action signature" where
"impl_sig = (⋃l.{Free l} ∪ {New},
⋃l.{Loc l},
{})"
definition
impl_trans :: "(action, nat * bool)transition set" where
"impl_trans =
{tr. let s = fst(tr); k = fst s; b = snd s;
t = snd(snd(tr)); k' = fst t; b' = snd t
in
case fst(snd(tr))
of
New ⇒ k' = k ∧ b' |
Loc l ⇒ b ∧ l= k ∧ k'= (Suc k) ∧ ¬b' |
Free l ⇒ k'=k ∧ b'=b}"
definition
impl_ioa :: "(action, nat * bool)ioa" where
"impl_ioa = (impl_sig, {(0,False)}, impl_trans,{},{})"
lemma in_impl_asig:
"New ∈ actions(impl_sig) ∧
Loc l ∈ actions(impl_sig) ∧
Free l ∈ actions(impl_sig) "
by (simp add: impl_sig_def actions_def asig_projections)
end