Theory HOL.Lifting

(*  Title:      HOL/Lifting.thy
    Author:     Brian Huffman and Ondrej Kuncar
    Author:     Cezary Kaliszyk and Christian Urban
*)

section ‹Lifting package›

theory Lifting
imports Equiv_Relations Transfer
keywords
  "parametric" and
  "print_quot_maps" "print_quotients" :: diag and
  "lift_definition" :: thy_goal_defn and
  "setup_lifting" "lifting_forget" "lifting_update" :: thy_decl
begin

subsection ‹Function map›

context includes lifting_syntax
begin

lemma map_fun_id:
  "(id ---> id) = id"
  by (simp add: fun_eq_iff)

subsection ‹Quotient Predicate›

definition
  "Quotient R Abs Rep T 
     (a. Abs (Rep a) = a) 
     (a. R (Rep a) (Rep a)) 
     (r s. R r s  R r r  R s s  Abs r = Abs s) 
     T = (λx y. R x x  Abs x = y)"

lemma QuotientI:
  assumes "a. Abs (Rep a) = a"
    and "a. R (Rep a) (Rep a)"
    and "r s. R r s  R r r  R s s  Abs r = Abs s"
    and "T = (λx y. R x x  Abs x = y)"
  shows "Quotient R Abs Rep T"
  using assms unfolding Quotient_def by blast

context
  fixes R Abs Rep T
  assumes a: "Quotient R Abs Rep T"
begin

lemma Quotient_abs_rep: "Abs (Rep a) = a"
  using a unfolding Quotient_def
  by simp

lemma Quotient_rep_reflp: "R (Rep a) (Rep a)"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel:
  "R r r  R s s  Abs r = Abs s  R r s" ― ‹orientation does not loop on rewriting›
  using a unfolding Quotient_def
  by blast

lemma Quotient_cr_rel: "T = (λx y. R x x  Abs x = y)"
  using a unfolding Quotient_def
  by blast

lemma Quotient_refl1: "R r s  R r r"
  using a unfolding Quotient_def
  by fast

lemma Quotient_refl2: "R r s  R s s"
  using a unfolding Quotient_def
  by fast

lemma Quotient_rel_rep: "R (Rep a) (Rep b)  a = b"
  using a unfolding Quotient_def
  by metis

lemma Quotient_rep_abs: "R r r  R (Rep (Abs r)) r"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rep_abs_eq: "R t t  R  (=)  Rep (Abs t) = t"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rep_abs_fold_unmap:
  assumes "x'  Abs x" and "R x x" and "Rep x'  Rep' x'"
  shows "R (Rep' x') x"
proof -
  have "R (Rep x') x" using assms(1-2) Quotient_rep_abs by auto
  then show ?thesis using assms(3) by simp
qed

lemma Quotient_Rep_eq:
  assumes "x'  Abs x"
  shows "Rep x'  Rep x'"
by simp

lemma Quotient_rel_abs: "R r s  Abs r = Abs s"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel_abs2:
  assumes "R (Rep x) y"
  shows "x = Abs y"
proof -
  from assms have "Abs (Rep x) = Abs y" by (auto intro: Quotient_rel_abs)
  then show ?thesis using assms(1) by (simp add: Quotient_abs_rep)
qed

lemma Quotient_symp: "symp R"
  using a unfolding Quotient_def using sympI by (metis (full_types))

lemma Quotient_transp: "transp R"
  using a unfolding Quotient_def using transpI by (metis (full_types))

lemma Quotient_part_equivp: "part_equivp R"
by (metis Quotient_rep_reflp Quotient_symp Quotient_transp part_equivpI)

end

lemma identity_quotient: "Quotient (=) id id (=)"
unfolding Quotient_def by simp

text ‹TODO: Use one of these alternatives as the real definition.›

lemma Quotient_alt_def:
  "Quotient R Abs Rep T 
    (a b. T a b  Abs a = b) 
    (b. T (Rep b) b) 
    (x y. R x y  T x (Abs x)  T y (Abs y)  Abs x = Abs y)"
apply safe
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (simp (no_asm_use) only: Quotient_def, fast)
apply (rule QuotientI)
apply simp
apply metis
apply simp
apply (rule ext, rule ext, metis)
done

lemma Quotient_alt_def2:
  "Quotient R Abs Rep T 
    (a b. T a b  Abs a = b) 
    (b. T (Rep b) b) 
    (x y. R x y  T x (Abs y)  T y (Abs x))"
  unfolding Quotient_alt_def by (safe, metis+)

lemma Quotient_alt_def3:
  "Quotient R Abs Rep T 
    (a b. T a b  Abs a = b)  (b. T (Rep b) b) 
    (x y. R x y  (z. T x z  T y z))"
  unfolding Quotient_alt_def2 by (safe, metis+)

lemma Quotient_alt_def4:
  "Quotient R Abs Rep T 
    (a b. T a b  Abs a = b)  (b. T (Rep b) b)  R = T OO conversep T"
  unfolding Quotient_alt_def3 fun_eq_iff by auto

lemma Quotient_alt_def5:
  "Quotient R Abs Rep T 
    T  BNF_Def.Grp UNIV Abs  BNF_Def.Grp UNIV Rep  T¯¯  R = T OO T¯¯"
  unfolding Quotient_alt_def4 Grp_def by blast

lemma fun_quotient:
  assumes 1: "Quotient R1 abs1 rep1 T1"
  assumes 2: "Quotient R2 abs2 rep2 T2"
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2) (T1 ===> T2)"
  using assms unfolding Quotient_alt_def2
  unfolding rel_fun_def fun_eq_iff map_fun_apply
  by (safe, metis+)

lemma apply_rsp:
  fixes f g::"'a  'c"
  assumes q: "Quotient R1 Abs1 Rep1 T1"
  and     a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by (auto elim: rel_funE)

lemma apply_rsp':
  assumes a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by (auto elim: rel_funE)

lemma apply_rsp'':
  assumes "Quotient R Abs Rep T"
  and "(R ===> S) f f"
  shows "S (f (Rep x)) (f (Rep x))"
proof -
  from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient_rep_reflp)
  then show ?thesis using assms(2) by (auto intro: apply_rsp')
qed

subsection ‹Quotient composition›

lemma Quotient_compose:
  assumes 1: "Quotient R1 Abs1 Rep1 T1"
  assumes 2: "Quotient R2 Abs2 Rep2 T2"
  shows "Quotient (T1 OO R2 OO conversep T1) (Abs2  Abs1) (Rep1  Rep2) (T1 OO T2)"
  using assms unfolding Quotient_alt_def4 by fastforce

lemma equivp_reflp2:
  "equivp R  reflp R"
  by (erule equivpE)

subsection ‹Respects predicate›

definition Respects :: "('a  'a  bool)  'a set"
  where "Respects R = {x. R x x}"

lemma in_respects: "x  Respects R  R x x"
  unfolding Respects_def by simp

lemma UNIV_typedef_to_Quotient:
  assumes "type_definition Rep Abs UNIV"
  and T_def: "T  (λx y. x = Rep y)"
  shows "Quotient (=) Abs Rep T"
proof -
  interpret type_definition Rep Abs UNIV by fact
  from Abs_inject Rep_inverse Abs_inverse T_def show ?thesis
    by (fastforce intro!: QuotientI fun_eq_iff)
qed

lemma UNIV_typedef_to_equivp:
  fixes Abs :: "'a  'b"
  and Rep :: "'b  'a"
  assumes "type_definition Rep Abs (UNIV::'a set)"
  shows "equivp ((=) ::'a'abool)"
by (rule identity_equivp)

lemma typedef_to_Quotient:
  assumes "type_definition Rep Abs S"
  and T_def: "T  (λx y. x = Rep y)"
  shows "Quotient (eq_onp (λx. x  S)) Abs Rep T"
proof -
  interpret type_definition Rep Abs S by fact
  from Rep Abs_inject Rep_inverse Abs_inverse T_def show ?thesis
    by (auto intro!: QuotientI simp: eq_onp_def fun_eq_iff)
qed

lemma typedef_to_part_equivp:
  assumes "type_definition Rep Abs S"
  shows "part_equivp (eq_onp (λx. x  S))"
proof (intro part_equivpI)
  interpret type_definition Rep Abs S by fact
  show "x. eq_onp (λx. x  S) x x" using Rep by (auto simp: eq_onp_def)
next
  show "symp (eq_onp (λx. x  S))" by (auto intro: sympI simp: eq_onp_def)
next
  show "transp (eq_onp (λx. x  S))" by (auto intro: transpI simp: eq_onp_def)
qed

lemma open_typedef_to_Quotient:
  assumes "type_definition Rep Abs {x. P x}"
  and T_def: "T  (λx y. x = Rep y)"
  shows "Quotient (eq_onp P) Abs Rep T"
  using typedef_to_Quotient [OF assms] by simp

lemma open_typedef_to_part_equivp:
  assumes "type_definition Rep Abs {x. P x}"
  shows "part_equivp (eq_onp P)"
  using typedef_to_part_equivp [OF assms] by simp

lemma type_definition_Quotient_not_empty: "Quotient (eq_onp P) Abs Rep T  x. P x"
unfolding eq_onp_def by (drule Quotient_rep_reflp) blast

lemma type_definition_Quotient_not_empty_witness: "Quotient (eq_onp P) Abs Rep T  P (Rep undefined)"
unfolding eq_onp_def by (drule Quotient_rep_reflp) blast


text ‹Generating transfer rules for quotients.›

context
  fixes R Abs Rep T
  assumes 1: "Quotient R Abs Rep T"
begin

lemma Quotient_right_unique: "right_unique T"
  using 1 unfolding Quotient_alt_def right_unique_def by metis

lemma Quotient_right_total: "right_total T"
  using 1 unfolding Quotient_alt_def right_total_def by metis

lemma Quotient_rel_eq_transfer: "(T ===> T ===> (=)) R (=)"
  using 1 unfolding Quotient_alt_def rel_fun_def by simp

lemma Quotient_abs_induct:
  assumes "y. R y y  P (Abs y)" shows "P x"
  using 1 assms unfolding Quotient_def by metis

end

text ‹Generating transfer rules for total quotients.›

context
  fixes R Abs Rep T
  assumes 1: "Quotient R Abs Rep T" and 2: "reflp R"
begin

lemma Quotient_left_total: "left_total T"
  using 1 2 unfolding Quotient_alt_def left_total_def reflp_def by auto

lemma Quotient_bi_total: "bi_total T"
  using 1 2 unfolding Quotient_alt_def bi_total_def reflp_def by auto

lemma Quotient_id_abs_transfer: "((=) ===> T) (λx. x) Abs"
  using 1 2 unfolding Quotient_alt_def reflp_def rel_fun_def by simp

lemma Quotient_total_abs_induct: "(y. P (Abs y))  P x"
  using 1 2 unfolding Quotient_alt_def reflp_def by metis

lemma Quotient_total_abs_eq_iff: "Abs x = Abs y  R x y"
  using Quotient_rel [OF 1] 2 unfolding reflp_def by simp

end

text ‹Generating transfer rules for a type defined with typedef›.›

context
  fixes Rep Abs A T
  assumes type: "type_definition Rep Abs A"
  assumes T_def: "T  (λ(x::'a) (y::'b). x = Rep y)"
begin

lemma typedef_left_unique: "left_unique T"
  unfolding left_unique_def T_def
  by (simp add: type_definition.Rep_inject [OF type])

lemma typedef_bi_unique: "bi_unique T"
  unfolding bi_unique_def T_def
  by (simp add: type_definition.Rep_inject [OF type])

(* the following two theorems are here only for convinience *)

lemma typedef_right_unique: "right_unique T"
  using T_def type Quotient_right_unique typedef_to_Quotient
  by blast

lemma typedef_right_total: "right_total T"
  using T_def type Quotient_right_total typedef_to_Quotient
  by blast

lemma typedef_rep_transfer: "(T ===> (=)) (λx. x) Rep"
  unfolding rel_fun_def T_def by simp

end

text ‹Generating the correspondence rule for a constant defined with
  lift_definition›.›

lemma Quotient_to_transfer:
  assumes "Quotient R Abs Rep T" and "R c c" and "c'  Abs c"
  shows "T c c'"
  using assms by (auto dest: Quotient_cr_rel)

text ‹Proving reflexivity›

lemma Quotient_to_left_total:
  assumes q: "Quotient R Abs Rep T"
  and r_R: "reflp R"
  shows "left_total T"
using r_R Quotient_cr_rel[OF q] unfolding left_total_def by (auto elim: reflpE)

lemma Quotient_composition_ge_eq:
  assumes "left_total T"
  assumes "R  (=)"
  shows "(T OO R OO T¯¯)  (=)"
using assms unfolding left_total_def by fast

lemma Quotient_composition_le_eq:
  assumes "left_unique T"
  assumes "R  (=)"
  shows "(T OO R OO T¯¯)  (=)"
using assms unfolding left_unique_def by blast

lemma eq_onp_le_eq:
  "eq_onp P  (=)" unfolding eq_onp_def by blast

lemma reflp_ge_eq:
  "reflp R  R  (=)" unfolding reflp_def by blast

text ‹Proving a parametrized correspondence relation›

definition POS :: "('a  'b  bool)  ('a  'b  bool)  bool" where
"POS A B  A  B"

definition  NEG :: "('a  'b  bool)  ('a  'b  bool)  bool" where
"NEG A B  B  A"

lemma pos_OO_eq:
  shows "POS (A OO (=)) A"
unfolding POS_def OO_def by blast

lemma pos_eq_OO:
  shows "POS ((=) OO A) A"
unfolding POS_def OO_def by blast

lemma neg_OO_eq:
  shows "NEG (A OO (=)) A"
unfolding NEG_def OO_def by auto

lemma neg_eq_OO:
  shows "NEG ((=) OO A) A"
unfolding NEG_def OO_def by blast

lemma POS_trans:
  assumes "POS A B"
  assumes "POS B C"
  shows "POS A C"
using assms unfolding POS_def by auto

lemma NEG_trans:
  assumes "NEG A B"
  assumes "NEG B C"
  shows "NEG A C"
using assms unfolding NEG_def by auto

lemma POS_NEG:
  "POS A B  NEG B A"
  unfolding POS_def NEG_def by auto

lemma NEG_POS:
  "NEG A B  POS B A"
  unfolding POS_def NEG_def by auto

lemma POS_pcr_rule:
  assumes "POS (A OO B) C"
  shows "POS (A OO B OO X) (C OO X)"
using assms unfolding POS_def OO_def by blast

lemma NEG_pcr_rule:
  assumes "NEG (A OO B) C"
  shows "NEG (A OO B OO X) (C OO X)"
using assms unfolding NEG_def OO_def by blast

lemma POS_apply:
  assumes "POS R R'"
  assumes "R f g"
  shows "R' f g"
using assms unfolding POS_def by auto

text ‹Proving a parametrized correspondence relation›

lemma fun_mono:
  assumes "A  C"
  assumes "B  D"
  shows   "(A ===> B)  (C ===> D)"
using assms unfolding rel_fun_def by blast

lemma pos_fun_distr: "((R ===> S) OO (R' ===> S'))  ((R OO R') ===> (S OO S'))"
unfolding OO_def rel_fun_def by blast

lemma functional_relation: "right_unique R  left_total R  x. ∃!y. R x y"
unfolding right_unique_def left_total_def by blast

lemma functional_converse_relation: "left_unique R  right_total R  y. ∃!x. R x y"
unfolding left_unique_def right_total_def by blast

lemma neg_fun_distr1:
assumes 1: "left_unique R" "right_total R"
assumes 2: "right_unique R'" "left_total R'"
shows "(R OO R' ===> S OO S')  ((R ===> S) OO (R' ===> S')) "
  using functional_relation[OF 2] functional_converse_relation[OF 1]
  unfolding rel_fun_def OO_def
  apply clarify
  apply (subst all_comm)
  apply (subst all_conj_distrib[symmetric])
  apply (intro choice)
  by metis

lemma neg_fun_distr2:
assumes 1: "right_unique R'" "left_total R'"
assumes 2: "left_unique S'" "right_total S'"
shows "(R OO R' ===> S OO S')  ((R ===> S) OO (R' ===> S'))"
  using functional_converse_relation[OF 2] functional_relation[OF 1]
  unfolding rel_fun_def OO_def
  apply clarify
  apply (subst all_comm)
  apply (subst all_conj_distrib[symmetric])
  apply (intro choice)
  by metis

subsection ‹Domains›

lemma composed_equiv_rel_eq_onp:
  assumes "left_unique R"
  assumes "(R ===> (=)) P P'"
  assumes "Domainp R = P''"
  shows "(R OO eq_onp P' OO R¯¯) = eq_onp (inf P'' P)"
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def rel_fun_def eq_onp_def
fun_eq_iff by blast

lemma composed_equiv_rel_eq_eq_onp:
  assumes "left_unique R"
  assumes "Domainp R = P"
  shows "(R OO (=) OO R¯¯) = eq_onp P"
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def eq_onp_def
fun_eq_iff is_equality_def by metis

lemma pcr_Domainp_par_left_total:
  assumes "Domainp B = P"
  assumes "left_total A"
  assumes "(A ===> (=)) P' P"
  shows "Domainp (A OO B) = P'"
using assms
unfolding Domainp_iff[abs_def] OO_def bi_unique_def left_total_def rel_fun_def
by (fast intro: fun_eq_iff)

lemma pcr_Domainp_par:
assumes "Domainp B = P2"
assumes "Domainp A = P1"
assumes "(A ===> (=)) P2' P2"
shows "Domainp (A OO B) = (inf P1 P2')"
using assms unfolding rel_fun_def Domainp_iff[abs_def] OO_def
by (fast intro: fun_eq_iff)

definition rel_pred_comp :: "('a => 'b => bool) => ('b => bool) => 'a => bool"
where "rel_pred_comp R P  λx. y. R x y  P y"

lemma pcr_Domainp:
assumes "Domainp B = P"
shows "Domainp (A OO B) = (λx. y. A x y  P y)"
using assms by blast

lemma pcr_Domainp_total:
  assumes "left_total B"
  assumes "Domainp A = P"
  shows "Domainp (A OO B) = P"
using assms unfolding left_total_def
by fast

lemma Quotient_to_Domainp:
  assumes "Quotient R Abs Rep T"
  shows "Domainp T = (λx. R x x)"
by (simp add: Domainp_iff[abs_def] Quotient_cr_rel[OF assms])

lemma eq_onp_to_Domainp:
  assumes "Quotient (eq_onp P) Abs Rep T"
  shows "Domainp T = P"
by (simp add: eq_onp_def Domainp_iff[abs_def] Quotient_cr_rel[OF assms])

end

(* needed for lifting_def_code_dt.ML (moved from Lifting_Set) *)
lemma right_total_UNIV_transfer:
  assumes "right_total A"
  shows "(rel_set A) (Collect (Domainp A)) UNIV"
  using assms unfolding right_total_def rel_set_def Domainp_iff by blast

subsection ‹ML setup›

ML_file ‹Tools/Lifting/lifting_util.ML›

named_theorems relator_eq_onp
  "theorems that a relator of an eq_onp is an eq_onp of the corresponding predicate"
ML_file ‹Tools/Lifting/lifting_info.ML›

(* setup for the function type *)
declare fun_quotient[quot_map]
declare fun_mono[relator_mono]
lemmas [relator_distr] = pos_fun_distr neg_fun_distr1 neg_fun_distr2

ML_file ‹Tools/Lifting/lifting_bnf.ML›
ML_file ‹Tools/Lifting/lifting_term.ML›
ML_file ‹Tools/Lifting/lifting_def.ML›
ML_file ‹Tools/Lifting/lifting_setup.ML›
ML_file ‹Tools/Lifting/lifting_def_code_dt.ML›

lemma pred_prod_beta: "pred_prod P Q xy  P (fst xy)  Q (snd xy)"
by(cases xy) simp

lemma pred_prod_split: "P (pred_prod Q R xy)  (x y. xy = (x, y)  P (Q x  R y))"
by(cases xy) simp

hide_const (open) POS NEG

end