Theory HOL.Equiv_Relations
section ‹Equivalence Relations in Higher-Order Set Theory›
theory Equiv_Relations
imports BNF_Least_Fixpoint
begin
subsection ‹Equivalence relations -- set version›
definition equiv :: "'a set ⇒ ('a × 'a) set ⇒ bool"
where "equiv A r ⟷ refl_on A r ∧ sym r ∧ trans r"
lemma equivI: "refl_on A r ⟹ sym r ⟹ trans r ⟹ equiv A r"
by (simp add: equiv_def)
lemma equivE:
assumes "equiv A r"
obtains "refl_on A r" and "sym r" and "trans r"
using assms by (simp add: equiv_def)
text ‹
Suppes, Theorem 70: ‹r› is an equiv relation iff ‹r¯ O r = r›.
First half: ‹equiv A r ⟹ r¯ O r = r›.
›
lemma sym_trans_comp_subset: "sym r ⟹ trans r ⟹ r¯ O r ⊆ r"
unfolding trans_def sym_def converse_unfold by blast
lemma refl_on_comp_subset: "refl_on A r ⟹ r ⊆ r¯ O r"
unfolding refl_on_def by blast
lemma equiv_comp_eq: "equiv A r ⟹ r¯ O r = r"
unfolding equiv_def
by (iprover intro: sym_trans_comp_subset refl_on_comp_subset equalityI)
text ‹Second half.›
lemma comp_equivI:
assumes "r¯ O r = r" "Domain r = A"
shows "equiv A r"
proof -
have *: "⋀x y. (x, y) ∈ r ⟹ (y, x) ∈ r"
using assms by blast
show ?thesis
unfolding equiv_def refl_on_def sym_def trans_def
using assms by (auto intro: *)
qed
subsection ‹Equivalence classes›
lemma equiv_class_subset: "equiv A r ⟹ (a, b) ∈ r ⟹ r``{a} ⊆ r``{b}"
unfolding equiv_def trans_def sym_def by blast
theorem equiv_class_eq: "equiv A r ⟹ (a, b) ∈ r ⟹ r``{a} = r``{b}"
by (intro equalityI equiv_class_subset; force simp add: equiv_def sym_def)
lemma equiv_class_self: "equiv A r ⟹ a ∈ A ⟹ a ∈ r``{a}"
unfolding equiv_def refl_on_def by blast
lemma subset_equiv_class: "equiv A r ⟹ r``{b} ⊆ r``{a} ⟹ b ∈ A ⟹ (a, b) ∈ r"
unfolding equiv_def refl_on_def by blast
lemma eq_equiv_class: "r``{a} = r``{b} ⟹ equiv A r ⟹ b ∈ A ⟹ (a, b) ∈ r"
by (iprover intro: equalityD2 subset_equiv_class)
lemma equiv_class_nondisjoint: "equiv A r ⟹ x ∈ (r``{a} ∩ r``{b}) ⟹ (a, b) ∈ r"
unfolding equiv_def trans_def sym_def by blast
lemma equiv_type: "equiv A r ⟹ r ⊆ A × A"
unfolding equiv_def refl_on_def by blast
lemma equiv_class_eq_iff: "equiv A r ⟹ (x, y) ∈ r ⟷ r``{x} = r``{y} ∧ x ∈ A ∧ y ∈ A"
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
lemma eq_equiv_class_iff: "equiv A r ⟹ x ∈ A ⟹ y ∈ A ⟹ r``{x} = r``{y} ⟷ (x, y) ∈ r"
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
lemma disjnt_equiv_class: "equiv A r ⟹ disjnt (r``{a}) (r``{b}) ⟷ (a, b) ∉ r"
by (auto dest: equiv_class_self simp: equiv_class_eq_iff disjnt_def)
subsection ‹Quotients›
definition quotient :: "'a set ⇒ ('a × 'a) set ⇒ 'a set set" (infixl "'/'/" 90)
where "A//r = (⋃x ∈ A. {r``{x}})"
lemma quotientI: "x ∈ A ⟹ r``{x} ∈ A//r"
unfolding quotient_def by blast
lemma quotientE: "X ∈ A//r ⟹ (⋀x. X = r``{x} ⟹ x ∈ A ⟹ P) ⟹ P"
unfolding quotient_def by blast
lemma Union_quotient: "equiv A r ⟹ ⋃(A//r) = A"
unfolding equiv_def refl_on_def quotient_def by blast
lemma quotient_disj: "equiv A r ⟹ X ∈ A//r ⟹ Y ∈ A//r ⟹ X = Y ∨ X ∩ Y = {}"
unfolding quotient_def equiv_def trans_def sym_def by blast
lemma quotient_eqI:
assumes "equiv A r" "X ∈ A//r" "Y ∈ A//r" and xy: "x ∈ X" "y ∈ Y" "(x, y) ∈ r"
shows "X = Y"
proof -
obtain a b where "a ∈ A" and a: "X = r `` {a}" and "b ∈ A" and b: "Y = r `` {b}"
using assms by (auto elim!: quotientE)
then have "(a,b) ∈ r"
using xy ‹equiv A r› unfolding equiv_def sym_def trans_def by blast
then show ?thesis
unfolding a b by (rule equiv_class_eq [OF ‹equiv A r›])
qed
lemma quotient_eq_iff:
assumes "equiv A r" "X ∈ A//r" "Y ∈ A//r" and xy: "x ∈ X" "y ∈ Y"
shows "X = Y ⟷ (x, y) ∈ r"
proof
assume L: "X = Y"
with assms show "(x, y) ∈ r"
unfolding equiv_def sym_def trans_def by (blast elim!: quotientE)
next
assume §: "(x, y) ∈ r" show "X = Y"
by (rule quotient_eqI) (use § assms in ‹blast+›)
qed
lemma eq_equiv_class_iff2: "equiv A r ⟹ x ∈ A ⟹ y ∈ A ⟹ {x}//r = {y}//r ⟷ (x, y) ∈ r"
by (simp add: quotient_def eq_equiv_class_iff)
lemma quotient_empty [simp]: "{}//r = {}"
by (simp add: quotient_def)
lemma quotient_is_empty [iff]: "A//r = {} ⟷ A = {}"
by (simp add: quotient_def)
lemma quotient_is_empty2 [iff]: "{} = A//r ⟷ A = {}"
by (simp add: quotient_def)
lemma singleton_quotient: "{x}//r = {r `` {x}}"
by (simp add: quotient_def)
lemma quotient_diff1: "inj_on (λa. {a}//r) A ⟹ a ∈ A ⟹ (A - {a})//r = A//r - {a}//r"
unfolding quotient_def inj_on_def by blast
subsection ‹Refinement of one equivalence relation WRT another›
lemma refines_equiv_class_eq: "R ⊆ S ⟹ equiv A R ⟹ equiv A S ⟹ R``(S``{a}) = S``{a}"
by (auto simp: equiv_class_eq_iff)
lemma refines_equiv_class_eq2: "R ⊆ S ⟹ equiv A R ⟹ equiv A S ⟹ S``(R``{a}) = S``{a}"
by (auto simp: equiv_class_eq_iff)
lemma refines_equiv_image_eq: "R ⊆ S ⟹ equiv A R ⟹ equiv A S ⟹ (λX. S``X) ` (A//R) = A//S"
by (auto simp: quotient_def image_UN refines_equiv_class_eq2)
lemma finite_refines_finite:
"finite (A//R) ⟹ R ⊆ S ⟹ equiv A R ⟹ equiv A S ⟹ finite (A//S)"
by (erule finite_surj [where f = "λX. S``X"]) (simp add: refines_equiv_image_eq)
lemma finite_refines_card_le:
"finite (A//R) ⟹ R ⊆ S ⟹ equiv A R ⟹ equiv A S ⟹ card (A//S) ≤ card (A//R)"
by (subst refines_equiv_image_eq [of R S A, symmetric])
(auto simp: card_image_le [where f = "λX. S``X"])
subsection ‹Defining unary operations upon equivalence classes›
text ‹A congruence-preserving function.›
definition congruent :: "('a × 'a) set ⇒ ('a ⇒ 'b) ⇒ bool"
where "congruent r f ⟷ (∀(y, z) ∈ r. f y = f z)"
lemma congruentI: "(⋀y z. (y, z) ∈ r ⟹ f y = f z) ⟹ congruent r f"
by (auto simp add: congruent_def)
lemma congruentD: "congruent r f ⟹ (y, z) ∈ r ⟹ f y = f z"
by (auto simp add: congruent_def)
abbreviation RESPECTS :: "('a ⇒ 'b) ⇒ ('a × 'a) set ⇒ bool" (infixr "respects" 80)
where "f respects r ≡ congruent r f"
lemma UN_constant_eq: "a ∈ A ⟹ ∀y ∈ A. f y = c ⟹ (⋃y ∈ A. f y) = c"
by auto
lemma UN_equiv_class:
assumes "equiv A r" "f respects r" "a ∈ A"
shows "(⋃x ∈ r``{a}. f x) = f a"
proof -
have §: "∀x∈r `` {a}. f x = f a"
using assms unfolding equiv_def congruent_def sym_def by blast
show ?thesis
by (iprover intro: assms UN_constant_eq [OF equiv_class_self §])
qed
lemma UN_equiv_class_type:
assumes r: "equiv A r" "f respects r" and X: "X ∈ A//r" and AB: "⋀x. x ∈ A ⟹ f x ∈ B"
shows "(⋃x ∈ X. f x) ∈ B"
using assms unfolding quotient_def
by (auto simp: UN_equiv_class [OF r])
text ‹
Sufficient conditions for injectiveness. Could weaken premises!
major premise could be an inclusion; ‹bcong› could be
‹⋀y. y ∈ A ⟹ f y ∈ B›.
›
lemma UN_equiv_class_inject:
assumes "equiv A r" "f respects r"
and eq: "(⋃x ∈ X. f x) = (⋃y ∈ Y. f y)"
and X: "X ∈ A//r" and Y: "Y ∈ A//r"
and fr: "⋀x y. x ∈ A ⟹ y ∈ A ⟹ f x = f y ⟹ (x, y) ∈ r"
shows "X = Y"
proof -
obtain a b where "a ∈ A" and a: "X = r `` {a}" and "b ∈ A" and b: "Y = r `` {b}"
using assms by (auto elim!: quotientE)
then have "⋃ (f ` r `` {a}) = f a" "⋃ (f ` r `` {b}) = f b"
by (iprover intro: UN_equiv_class [OF ‹equiv A r›] assms)+
then have "f a = f b"
using eq unfolding a b by (iprover intro: trans sym)
then have "(a,b) ∈ r"
using fr ‹a ∈ A› ‹b ∈ A› by blast
then show ?thesis
unfolding a b by (rule equiv_class_eq [OF ‹equiv A r›])
qed
subsection ‹Defining binary operations upon equivalence classes›
text ‹A congruence-preserving function of two arguments.›
definition congruent2 :: "('a × 'a) set ⇒ ('b × 'b) set ⇒ ('a ⇒ 'b ⇒ 'c) ⇒ bool"
where "congruent2 r1 r2 f ⟷ (∀(y1, z1) ∈ r1. ∀(y2, z2) ∈ r2. f y1 y2 = f z1 z2)"
lemma congruent2I':
assumes "⋀y1 z1 y2 z2. (y1, z1) ∈ r1 ⟹ (y2, z2) ∈ r2 ⟹ f y1 y2 = f z1 z2"
shows "congruent2 r1 r2 f"
using assms by (auto simp add: congruent2_def)
lemma congruent2D: "congruent2 r1 r2 f ⟹ (y1, z1) ∈ r1 ⟹ (y2, z2) ∈ r2 ⟹ f y1 y2 = f z1 z2"
by (auto simp add: congruent2_def)
text ‹Abbreviation for the common case where the relations are identical.›
abbreviation RESPECTS2:: "('a ⇒ 'a ⇒ 'b) ⇒ ('a × 'a) set ⇒ bool" (infixr "respects2" 80)
where "f respects2 r ≡ congruent2 r r f"
lemma congruent2_implies_congruent:
"equiv A r1 ⟹ congruent2 r1 r2 f ⟹ a ∈ A ⟹ congruent r2 (f a)"
unfolding congruent_def congruent2_def equiv_def refl_on_def by blast
lemma congruent2_implies_congruent_UN:
assumes "equiv A1 r1" "equiv A2 r2" "congruent2 r1 r2 f" "a ∈ A2"
shows "congruent r1 (λx1. ⋃x2 ∈ r2``{a}. f x1 x2)"
unfolding congruent_def
proof clarify
fix c d
assume cd: "(c,d) ∈ r1"
then have "c ∈ A1" "d ∈ A1"
using ‹equiv A1 r1› by (auto elim!: equiv_type [THEN subsetD, THEN SigmaE2])
moreover have "f c a = f d a"
using assms cd unfolding congruent2_def equiv_def refl_on_def by blast
ultimately show "⋃ (f c ` r2 `` {a}) = ⋃ (f d ` r2 `` {a})"
using assms by (simp add: UN_equiv_class congruent2_implies_congruent)
qed
lemma UN_equiv_class2:
"equiv A1 r1 ⟹ equiv A2 r2 ⟹ congruent2 r1 r2 f ⟹ a1 ∈ A1 ⟹ a2 ∈ A2 ⟹
(⋃x1 ∈ r1``{a1}. ⋃x2 ∈ r2``{a2}. f x1 x2) = f a1 a2"
by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN)
lemma UN_equiv_class_type2:
"equiv A1 r1 ⟹ equiv A2 r2 ⟹ congruent2 r1 r2 f
⟹ X1 ∈ A1//r1 ⟹ X2 ∈ A2//r2
⟹ (⋀x1 x2. x1 ∈ A1 ⟹ x2 ∈ A2 ⟹ f x1 x2 ∈ B)
⟹ (⋃x1 ∈ X1. ⋃x2 ∈ X2. f x1 x2) ∈ B"
unfolding quotient_def
by (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
congruent2_implies_congruent quotientI)
lemma UN_UN_split_split_eq:
"(⋃(x1, x2) ∈ X. ⋃(y1, y2) ∈ Y. A x1 x2 y1 y2) =
(⋃x ∈ X. ⋃y ∈ Y. (λ(x1, x2). (λ(y1, y2). A x1 x2 y1 y2) y) x)"
by auto
lemma congruent2I:
"equiv A1 r1 ⟹ equiv A2 r2
⟹ (⋀y z w. w ∈ A2 ⟹ (y,z) ∈ r1 ⟹ f y w = f z w)
⟹ (⋀y z w. w ∈ A1 ⟹ (y,z) ∈ r2 ⟹ f w y = f w z)
⟹ congruent2 r1 r2 f"
unfolding congruent2_def equiv_def refl_on_def
by (blast intro: trans)
lemma congruent2_commuteI:
assumes equivA: "equiv A r"
and commute: "⋀y z. y ∈ A ⟹ z ∈ A ⟹ f y z = f z y"
and congt: "⋀y z w. w ∈ A ⟹ (y,z) ∈ r ⟹ f w y = f w z"
shows "f respects2 r"
proof (rule congruent2I [OF equivA equivA])
note eqv = equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2]
show "⋀y z w. ⟦w ∈ A; (y, z) ∈ r⟧ ⟹ f y w = f z w"
by (iprover intro: commute [THEN trans] sym congt elim: eqv)
show "⋀y z w. ⟦w ∈ A; (y, z) ∈ r⟧ ⟹ f w y = f w z"
by (iprover intro: congt elim: eqv)
qed
subsection ‹Quotients and finiteness›
text ‹Suggested by Florian Kammüller›
lemma finite_quotient:
assumes "finite A" "r ⊆ A × A"
shows "finite (A//r)"
proof -
have "A//r ⊆ Pow A"
using assms unfolding quotient_def by blast
moreover have "finite (Pow A)"
using assms by simp
ultimately show ?thesis
by (iprover intro: finite_subset)
qed
lemma finite_equiv_class: "finite A ⟹ r ⊆ A × A ⟹ X ∈ A//r ⟹ finite X"
unfolding quotient_def
by (erule rev_finite_subset) blast
lemma equiv_imp_dvd_card:
assumes "finite A" "equiv A r" "⋀X. X ∈ A//r ⟹ k dvd card X"
shows "k dvd card A"
proof (rule Union_quotient [THEN subst])
show "k dvd card (⋃ (A // r))"
apply (rule dvd_partition)
using assms
by (auto simp: Union_quotient dest: quotient_disj)
qed (use assms in blast)
subsection ‹Projection›
definition proj :: "('b × 'a) set ⇒ 'b ⇒ 'a set"
where "proj r x = r `` {x}"
lemma proj_preserves: "x ∈ A ⟹ proj r x ∈ A//r"
unfolding proj_def by (rule quotientI)
lemma proj_in_iff:
assumes "equiv A r"
shows "proj r x ∈ A//r ⟷ x ∈ A"
(is "?lhs ⟷ ?rhs")
proof
assume ?rhs
then show ?lhs by (simp add: proj_preserves)
next
assume ?lhs
then show ?rhs
unfolding proj_def quotient_def
proof safe
fix y
assume y: "y ∈ A" and "r `` {x} = r `` {y}"
moreover have "y ∈ r `` {y}"
using assms y unfolding equiv_def refl_on_def by blast
ultimately have "(x, y) ∈ r" by blast
then show "x ∈ A"
using assms unfolding equiv_def refl_on_def by blast
qed
qed
lemma proj_iff: "equiv A r ⟹ {x, y} ⊆ A ⟹ proj r x = proj r y ⟷ (x, y) ∈ r"
by (simp add: proj_def eq_equiv_class_iff)
lemma proj_image: "proj r ` A = A//r"
unfolding proj_def[abs_def] quotient_def by blast
lemma in_quotient_imp_non_empty: "equiv A r ⟹ X ∈ A//r ⟹ X ≠ {}"
unfolding quotient_def using equiv_class_self by fast
lemma in_quotient_imp_in_rel: "equiv A r ⟹ X ∈ A//r ⟹ {x, y} ⊆ X ⟹ (x, y) ∈ r"
using quotient_eq_iff[THEN iffD1] by fastforce
lemma in_quotient_imp_closed: "equiv A r ⟹ X ∈ A//r ⟹ x ∈ X ⟹ (x, y) ∈ r ⟹ y ∈ X"
unfolding quotient_def equiv_def trans_def by blast
lemma in_quotient_imp_subset: "equiv A r ⟹ X ∈ A//r ⟹ X ⊆ A"
using in_quotient_imp_in_rel equiv_type by fastforce
subsection ‹Equivalence relations -- predicate version›
text ‹Partial equivalences.›
definition part_equivp :: "('a ⇒ 'a ⇒ bool) ⇒ bool"
where "part_equivp R ⟷ (∃x. R x x) ∧ (∀x y. R x y ⟷ R x x ∧ R y y ∧ R x = R y)"
lemma part_equivpI: "∃x. R x x ⟹ symp R ⟹ transp R ⟹ part_equivp R"
by (auto simp add: part_equivp_def) (auto elim: sympE transpE)
lemma part_equivpE:
assumes "part_equivp R"
obtains x where "R x x" and "symp R" and "transp R"
proof -
from assms have 1: "∃x. R x x"
and 2: "⋀x y. R x y ⟷ R x x ∧ R y y ∧ R x = R y"
unfolding part_equivp_def by blast+
from 1 obtain x where "R x x" ..
moreover have "symp R"
proof (rule sympI)
fix x y
assume "R x y"
with 2 [of x y] show "R y x" by auto
qed
moreover have "transp R"
proof (rule transpI)
fix x y z
assume "R x y" and "R y z"
with 2 [of x y] 2 [of y z] show "R x z" by auto
qed
ultimately show thesis by (rule that)
qed
lemma part_equivp_refl_symp_transp: "part_equivp R ⟷ (∃x. R x x) ∧ symp R ∧ transp R"
by (auto intro: part_equivpI elim: part_equivpE)
lemma part_equivp_symp: "part_equivp R ⟹ R x y ⟹ R y x"
by (erule part_equivpE, erule sympE)
lemma part_equivp_transp: "part_equivp R ⟹ R x y ⟹ R y z ⟹ R x z"
by (erule part_equivpE, erule transpE)
lemma part_equivp_typedef: "part_equivp R ⟹ ∃d. d ∈ {c. ∃x. R x x ∧ c = Collect (R x)}"
by (auto elim: part_equivpE)
text ‹Total equivalences.›
definition equivp :: "('a ⇒ 'a ⇒ bool) ⇒ bool"
where "equivp R ⟷ (∀x y. R x y = (R x = R y))"
lemma equivpI: "reflp R ⟹ symp R ⟹ transp R ⟹ equivp R"
by (auto elim: reflpE sympE transpE simp add: equivp_def)
lemma equivpE:
assumes "equivp R"
obtains "reflp R" and "symp R" and "transp R"
using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def)
lemma equivp_implies_part_equivp: "equivp R ⟹ part_equivp R"
by (auto intro: part_equivpI elim: equivpE reflpE)
lemma equivp_equiv: "equiv UNIV A ⟷ equivp (λx y. (x, y) ∈ A)"
by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set])
lemma equivp_reflp_symp_transp: "equivp R ⟷ reflp R ∧ symp R ∧ transp R"
by (auto intro: equivpI elim: equivpE)
lemma identity_equivp: "equivp (=)"
by (auto intro: equivpI reflpI sympI transpI)
lemma equivp_reflp: "equivp R ⟹ R x x"
by (erule equivpE, erule reflpE)
lemma equivp_symp: "equivp R ⟹ R x y ⟹ R y x"
by (erule equivpE, erule sympE)
lemma equivp_transp: "equivp R ⟹ R x y ⟹ R y z ⟹ R x z"
by (erule equivpE, erule transpE)
lemma equivp_rtranclp: "symp r ⟹ equivp r⇧*⇧*"
by(intro equivpI reflpI sympI transpI)(auto dest: sympD[OF symp_rtranclp])
lemmas equivp_rtranclp_symclp [simp] = equivp_rtranclp[OF symp_on_symclp]
lemma equivp_vimage2p: "equivp R ⟹ equivp (vimage2p f f R)"
by(auto simp add: equivp_def vimage2p_def dest: fun_cong)
lemma equivp_imp_transp: "equivp R ⟹ transp R"
by(simp add: equivp_reflp_symp_transp)
subsection ‹Equivalence closure›
definition equivclp :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a ⇒ bool" where
"equivclp r = (symclp r)⇧*⇧*"
lemma transp_equivclp [simp]: "transp (equivclp r)"
by(simp add: equivclp_def)
lemma reflp_equivclp [simp]: "reflp (equivclp r)"
by(simp add: equivclp_def)
lemma symp_equivclp [simp]: "symp (equivclp r)"
by(simp add: equivclp_def)
lemma equivp_evquivclp [simp]: "equivp (equivclp r)"
by(simp add: equivpI)
lemma tranclp_equivclp [simp]: "(equivclp r)⇧+⇧+ = equivclp r"
by(simp add: equivclp_def)
lemma rtranclp_equivclp [simp]: "(equivclp r)⇧*⇧* = equivclp r"
by(simp add: equivclp_def)
lemma symclp_equivclp [simp]: "symclp (equivclp r) = equivclp r"
by(simp add: equivclp_def symp_symclp_eq)
lemma equivclp_symclp [simp]: "equivclp (symclp r) = equivclp r"
by(simp add: equivclp_def)
lemma equivclp_conversep [simp]: "equivclp (conversep r) = equivclp r"
by(simp add: equivclp_def)
lemma equivclp_sym [sym]: "equivclp r x y ⟹ equivclp r y x"
by(rule sympD[OF symp_equivclp])
lemma equivclp_OO_equivclp_le_equivclp: "equivclp r OO equivclp r ≤ equivclp r"
by(rule transp_relcompp_less_eq transp_equivclp)+
lemma rtranlcp_le_equivclp: "r⇧*⇧* ≤ equivclp r"
unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree)
lemma rtranclp_conversep_le_equivclp: "r¯¯⇧*⇧* ≤ equivclp r"
unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree)
lemma symclp_rtranclp_le_equivclp: "symclp r⇧*⇧* ≤ equivclp r"
unfolding symclp_pointfree
by(rule le_supI)(simp_all add: rtranclp_conversep[symmetric] rtranlcp_le_equivclp rtranclp_conversep_le_equivclp)
lemma r_OO_conversep_into_equivclp:
"r⇧*⇧* OO r¯¯⇧*⇧* ≤ equivclp r"
by(blast intro: order_trans[OF _ equivclp_OO_equivclp_le_equivclp] relcompp_mono rtranlcp_le_equivclp rtranclp_conversep_le_equivclp del: predicate2I)
lemma equivclp_induct [consumes 1, case_names base step, induct pred: equivclp]:
assumes a: "equivclp r a b"
and cases: "P a" "⋀y z. equivclp r a y ⟹ r y z ∨ r z y ⟹ P y ⟹ P z"
shows "P b"
using a unfolding equivclp_def
by(induction rule: rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE)
lemma converse_equivclp_induct [consumes 1, case_names base step]:
assumes major: "equivclp r a b"
and cases: "P b" "⋀y z. r y z ∨ r z y ⟹ equivclp r z b ⟹ P z ⟹ P y"
shows "P a"
using major unfolding equivclp_def
by(induction rule: converse_rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE)
lemma equivclp_refl [simp]: "equivclp r x x"
by(rule reflpD[OF reflp_equivclp])
lemma r_into_equivclp [intro]: "r x y ⟹ equivclp r x y"
unfolding equivclp_def by(blast intro: symclpI)
lemma converse_r_into_equivclp [intro]: "r y x ⟹ equivclp r x y"
unfolding equivclp_def by(blast intro: symclpI)
lemma rtranclp_into_equivclp: "r⇧*⇧* x y ⟹ equivclp r x y"
using rtranlcp_le_equivclp[of r] by blast
lemma converse_rtranclp_into_equivclp: "r⇧*⇧* y x ⟹ equivclp r x y"
by(blast intro: equivclp_sym rtranclp_into_equivclp)
lemma equivclp_into_equivclp: "⟦ equivclp r a b; r b c ∨ r c b ⟧ ⟹ equivclp r a c"
unfolding equivclp_def by(erule rtranclp.rtrancl_into_rtrancl)(auto intro: symclpI)
lemma equivclp_trans [trans]: "⟦ equivclp r a b; equivclp r b c ⟧ ⟹ equivclp r a c"
using equivclp_OO_equivclp_le_equivclp[of r] by blast
hide_const (open) proj
end