Theory Guard_Public
theory Guard_Public imports Guard "../Public" Extensions begin
subsection‹Extensions to Theory ‹Public››
declare initState.simps [simp del]
subsubsection‹signature›
definition sign :: "agent => msg => msg" where
"sign A X == ⦃Agent A, X, Crypt (priK A) (Hash X)⦄"
lemma sign_inj [iff]: "(sign A X = sign A' X') = (A=A' & X=X')"
by (auto simp: sign_def)
subsubsection‹agent associated to a key›
definition agt :: "key => agent" where
"agt K == SOME A. K = priK A | K = pubK A"
lemma agt_priK [simp]: "agt (priK A) = A"
by (simp add: agt_def)
lemma agt_pubK [simp]: "agt (pubK A) = A"
by (simp add: agt_def)
subsubsection‹basic facts about \<^term>‹initState››
lemma no_Crypt_in_parts_init [simp]: "Crypt K X ∉ parts (initState A)"
by (cases A, auto simp: initState.simps)
lemma no_Crypt_in_analz_init [simp]: "Crypt K X ∉ analz (initState A)"
by auto
lemma no_priK_in_analz_init [simp]: "A ∉ bad
⟹ Key (priK A) ∉ analz (initState Spy)"
by (auto simp: initState.simps)
lemma priK_notin_initState_Friend [simp]: "A ≠ Friend C
⟹ Key (priK A) ∉ parts (initState (Friend C))"
by (auto simp: initState.simps)
lemma keyset_init [iff]: "keyset (initState A)"
by (cases A, auto simp: keyset_def initState.simps)
subsubsection‹sets of private keys›
definition priK_set :: "key set => bool" where
"priK_set Ks ≡ ∀K. K ∈ Ks ⟶ (∃A. K = priK A)"
lemma in_priK_set: "⟦priK_set Ks; K ∈ Ks⟧ ⟹ ∃A. K = priK A"
by (simp add: priK_set_def)
lemma priK_set1 [iff]: "priK_set {priK A}"
by (simp add: priK_set_def)
lemma priK_set2 [iff]: "priK_set {priK A, priK B}"
by (simp add: priK_set_def)
subsubsection‹sets of good keys›
definition good :: "key set => bool" where
"good Ks == ∀K. K ∈ Ks ⟶ agt K ∉ bad"
lemma in_good: "⟦good Ks; K ∈ Ks⟧ ⟹ agt K ∉ bad"
by (simp add: good_def)
lemma good1 [simp]: "A ∉ bad ⟹ good {priK A}"
by (simp add: good_def)
lemma good2 [simp]: "⟦A ∉ bad; B ∉ bad⟧ ⟹ good {priK A, priK B}"
by (simp add: good_def)
subsubsection‹greatest nonce used in a trace, 0 if there is no nonce›
primrec greatest :: "event list => nat"
where
"greatest [] = 0"
| "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)"
lemma greatest_is_greatest: "Nonce n ∈ used evs ⟹ n ≤ greatest evs"
apply (induct evs, auto simp: initState.simps)
apply (drule used_sub_parts_used, safe)
apply (drule greatest_msg_is_greatest, arith)
by simp
subsubsection‹function giving a new nonce›
definition new :: "event list ⇒ nat" where
"new evs ≡ Suc (greatest evs)"
lemma new_isnt_used [iff]: "Nonce (new evs) ∉ used evs"
by (clarify, drule greatest_is_greatest, auto simp: new_def)
subsection‹Proofs About Guarded Messages›
subsubsection‹small hack necessary because priK is defined as the inverse of pubK›
lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)"
by simp
lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst]
lemmas invKey_invKey_substI = invKey [THEN ssubst]
lemma "Nonce n ∈ parts {X} ⟹ Crypt (pubK A) X ∈ guard n {priK A}"
apply (rule pubK_is_invKey_priK_substI, rule invKey_invKey_substI)
by (rule Guard_Nonce, simp+)
subsubsection‹guardedness results›
lemma sign_guard [intro]: "X ∈ guard n Ks ⟹ sign A X ∈ guard n Ks"
by (auto simp: sign_def)
lemma Guard_init [iff]: "Guard n Ks (initState B)"
by (induct B, auto simp: Guard_def initState.simps)
lemma Guard_knows_max': "Guard n Ks (knows_max' C evs)
⟹ Guard n Ks (knows_max C evs)"
by (simp add: knows_max_def)
lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ∉ used evs
⟹ Guard n Ks (spies evs)"
by (auto simp: Guard_def dest: not_used_not_known parts_sub)
lemma Nonce_not_used_Guard [dest]: "⟦evs ∈ p; Nonce n ∉ used evs;
Gets_correct p; one_step p⟧ ⟹ Guard n Ks (knows (Friend C) evs)"
by (auto simp: Guard_def dest: known_used parts_trans)
lemma Nonce_not_used_Guard_max [dest]: "⟦evs ∈ p; Nonce n ∉ used evs;
Gets_correct p; one_step p⟧ ⟹ Guard n Ks (knows_max (Friend C) evs)"
by (auto simp: Guard_def dest: known_max_used parts_trans)
lemma Nonce_not_used_Guard_max' [dest]: "⟦evs ∈ p; Nonce n ∉ used evs;
Gets_correct p; one_step p⟧ ⟹ Guard n Ks (knows_max' (Friend C) evs)"
apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono)
by (auto simp: knows_max_def)
subsubsection‹regular protocols›
definition regular :: "event list set ⇒ bool" where
"regular p ≡ ∀evs A. evs ∈ p ⟶ (Key (priK A) ∈ parts (spies evs)) = (A ∈ bad)"
lemma priK_parts_iff_bad [simp]: "⟦evs ∈ p; regular p⟧ ⟹
(Key (priK A) ∈ parts (spies evs)) = (A ∈ bad)"
by (auto simp: regular_def)
lemma priK_analz_iff_bad [simp]: "⟦evs ∈ p; regular p⟧ ⟹
(Key (priK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto
lemma Guard_Nonce_analz: "⟦Guard n Ks (spies evs); evs ∈ p;
priK_set Ks; good Ks; regular p⟧ ⟹ Nonce n ∉ analz (spies evs)"
apply (clarify, simp only: knows_decomp)
apply (drule Guard_invKey_keyset, simp+, safe)
apply (drule in_good, simp)
apply (drule in_priK_set, simp+, clarify)
apply (frule_tac A=A in priK_analz_iff_bad)
by (simp add: knows_decomp)+
end