Theory Message

(*  Title:      HOL/Auth/Message.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge

Datatypes of agents and messages;
Inductive relations "parts", "analz" and "synth"
*)

section‹Theory of Agents and Messages for Security Protocols›

theory Message
imports Main
begin

(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
lemma [simp] : "A  (B  A) = B  A"
  by blast

type_synonym
  key = nat

consts
  all_symmetric :: bool        ― ‹true if all keys are symmetric›
  invKey        :: "keykey"  ― ‹inverse of a symmetric key›

specification (invKey)
  invKey [simp]: "invKey (invKey K) = K"
  invKey_symmetric: "all_symmetric  invKey = id"
    by (rule exI [of _ id], auto)


text‹The inverse of a symmetric key is itself; that of a public key
      is the private key and vice versa›

definition symKeys :: "key set" where
  "symKeys == {K. invKey K = K}"

datatype  ― ‹We allow any number of friendly agents›
  agent = Server | Friend nat | Spy

datatype
     msg = Agent  agent     ― ‹Agent names›
         | Number nat       ― ‹Ordinary integers, timestamps, ...›
         | Nonce  nat       ― ‹Unguessable nonces›
         | Key    key       ― ‹Crypto keys›
         | Hash   msg       ― ‹Hashing›
         | MPair  msg msg   ― ‹Compound messages›
         | Crypt  key msg   ― ‹Encryption, public- or shared-key›


text‹Concrete syntax: messages appear as ⦃A,B,NA⦄›, etc...›
syntax
  "_MTuple" :: "['a, args]  'a * 'b"  ("(2_,/ _)")
translations
  "x, y, z"  "x, y, z"
  "x, y"  "CONST MPair x y"


definition HPair :: "[msg,msg]  msg" ("(4Hash[_] /_)" [0, 1000]) where
    ― ‹Message Y paired with a MAC computed with the help of X›
    "Hash[X] Y == HashX,Y, Y"

definition keysFor :: "msg set  key set" where
    ― ‹Keys useful to decrypt elements of a message set›
  "keysFor H == invKey ` {K. X. Crypt K X  H}"


subsection‹Inductive Definition of All Parts of a Message›

inductive_set
  parts :: "msg set  msg set"
  for H :: "msg set"
  where
    Inj [intro]: "X  H  X  parts H"
  | Fst:         "X,Y  parts H  X  parts H"
  | Snd:         "X,Y  parts H  Y  parts H"
  | Body:        "Crypt K X  parts H  X  parts H"


text‹Monotonicity›
lemma parts_mono_aux: "G  H; X  parts G  X  parts H"
  by (erule parts.induct) (auto dest: parts.Fst parts.Snd parts.Body)

lemma parts_mono: "G  H  parts(G)  parts(H)"
  using parts_mono_aux by blast


text‹Equations hold because constructors are injective.›
lemma Friend_image_eq [simp]: "(Friend x  Friend`A) = (x A)"
  by auto

lemma Key_image_eq [simp]: "(Key x  Key`A) = (x A)"
  by auto

lemma Nonce_Key_image_eq [simp]: "(Nonce x  Key`A)"
  by auto


subsection‹Inverse of keys›

lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
  by (metis invKey)


subsection‹The @{term keysFor} operator›

lemma keysFor_empty [simp]: "keysFor {} = {}"
    unfolding keysFor_def by blast

lemma keysFor_Un [simp]: "keysFor (H  H') = keysFor H  keysFor H'"
    unfolding keysFor_def by blast

lemma keysFor_UN [simp]: "keysFor (i A. H i) = (i A. keysFor (H i))"
    unfolding keysFor_def by blast

text‹Monotonicity›
lemma keysFor_mono: "G  H  keysFor(G)  keysFor(H)"
  unfolding keysFor_def by blast

lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_MPair [simp]: "keysFor (insert X,Y H) = keysFor H"
  unfolding keysFor_def by auto

lemma keysFor_insert_Crypt [simp]: 
    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
  unfolding keysFor_def by auto

lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
  unfolding keysFor_def by auto

lemma Crypt_imp_invKey_keysFor: "Crypt K X  H  invKey K  keysFor H"
  unfolding keysFor_def by blast


subsection‹Inductive relation "parts"›

lemma MPair_parts:
  "X,Y  parts H;        
         X  parts H; Y  parts H  P  P"
  by (blast dest: parts.Fst parts.Snd) 

declare MPair_parts [elim!]  parts.Body [dest!]
text‹NB These two rules are UNSAFE in the formal sense, as they discard the
     compound message.  They work well on THIS FILE.  
  MPair_parts› is left as SAFE because it speeds up proofs.
  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.›

lemma parts_increasing: "H  parts(H)"
  by blast

lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]

lemma parts_empty_aux: "X  parts{}  False"
  by (induction rule: parts.induct) (blast+)

lemma parts_empty [simp]: "parts{} = {}"
  using parts_empty_aux by blast

lemma parts_emptyE [elim!]: "X  parts{}  P"
  by simp

text‹WARNING: loops if H = {Y}, therefore must not be repeated!›
lemma parts_singleton: "X  parts H  Y H. X  parts {Y}"
  by (erule parts.induct, fast+)


subsubsection‹Unions›

lemma parts_Un [simp]: "parts(G  H) = parts(G)  parts(H)"
proof -
  have "X  parts (G  H)  X  parts G  parts H" for X
    by (induction rule: parts.induct) auto
  then show ?thesis
    by (simp add: order_antisym parts_mono subsetI)
qed

lemma parts_insert: "parts (insert X H) = parts {X}  parts H"
  by (metis insert_is_Un parts_Un)

text‹TWO inserts to avoid looping.  This rewrite is better than nothing.
  But its behaviour can be strange.›
lemma parts_insert2:
  "parts (insert X (insert Y H)) = parts {X}  parts {Y}  parts H"
  by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un)

lemma parts_image [simp]:
  "parts (f ` A) = (x A. parts {f x})"
  apply auto
   apply (metis (mono_tags, opaque_lifting) image_iff parts_singleton)
  apply (metis empty_subsetI image_eqI insert_absorb insert_subset parts_mono)
  done

text‹Added to simplify arguments to parts, analz and synth.›

text‹This allows blast› to simplify occurrences of 
  termparts(GH) in the assumption.›
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
declare in_parts_UnE [elim!]


lemma parts_insert_subset: "insert X (parts H)  parts(insert X H)"
  by (blast intro: parts_mono [THEN [2] rev_subsetD])

subsubsection‹Idempotence and transitivity›

lemma parts_partsD [dest!]: "X  parts (parts H)  X  parts H"
  by (erule parts.induct, blast+)

lemma parts_idem [simp]: "parts (parts H) = parts H"
  by blast

lemma parts_subset_iff [simp]: "(parts G  parts H) = (G  parts H)"
  by (metis parts_idem parts_increasing parts_mono subset_trans)

lemma parts_trans: "X  parts G;  G  parts H  X  parts H"
  by (metis parts_subset_iff subsetD)

text‹Cut›
lemma parts_cut:
  "Y  parts (insert X G);  X  parts H  Y  parts (G  H)" 
  by (blast intro: parts_trans) 

lemma parts_cut_eq [simp]: "X  parts H  parts (insert X H) = parts H"
  by (metis insert_absorb parts_idem parts_insert)


subsubsection‹Rewrite rules for pulling out atomic messages›

lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]


lemma parts_insert_Agent [simp]:
  "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
  apply (rule parts_insert_eq_I) 
  apply (erule parts.induct, auto) 
  done

lemma parts_insert_Nonce [simp]:
  "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
  apply (rule parts_insert_eq_I) 
  apply (erule parts.induct, auto) 
  done

lemma parts_insert_Number [simp]:
  "parts (insert (Number N) H) = insert (Number N) (parts H)"
  apply (rule parts_insert_eq_I) 
  apply (erule parts.induct, auto) 
  done

lemma parts_insert_Key [simp]:
  "parts (insert (Key K) H) = insert (Key K) (parts H)"
  apply (rule parts_insert_eq_I) 
  apply (erule parts.induct, auto) 
  done

lemma parts_insert_Hash [simp]:
  "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
  apply (rule parts_insert_eq_I) 
  apply (erule parts.induct, auto) 
  done

lemma parts_insert_Crypt [simp]:
  "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))"
proof -
  have "Y  parts (insert (Crypt K X) H)  Y  insert (Crypt K X) (parts (insert X H))" for Y
    by (induction rule: parts.induct) auto
  then show ?thesis
    by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I)
qed

lemma parts_insert_MPair [simp]:
  "parts (insert X,Y H) = insert X,Y (parts (insert X (insert Y H)))"
proof -
  have "Z  parts (insert X, Y H)  Z  insert X, Y (parts (insert X (insert Y H)))" for Z
    by (induction rule: parts.induct) auto
  then show ?thesis
    by (smt (verit) insertI1 insert_commute parts.simps parts_cut_eq parts_insert_eq_I)
qed

lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
  by auto

text‹In any message, there is an upper bound N on its greatest nonce.›
lemma msg_Nonce_supply: "N. n. Nn  Nonce n  parts {msg}"
proof (induct msg)
  case (Nonce n)
  show ?case
    by simp (metis Suc_n_not_le_n)
next
  case (MPair X Y)
  then show ?case ― ‹metis works out the necessary sum itself!›
    by (simp add: parts_insert2) (metis le_trans nat_le_linear)
qed auto

subsection‹Inductive relation "analz"›

text‹Inductive definition of "analz" -- what can be broken down from a set of
    messages, including keys.  A form of downward closure.  Pairs can
    be taken apart; messages decrypted with known keys.›

inductive_set
  analz :: "msg set  msg set"
  for H :: "msg set"
  where
    Inj [intro,simp]: "X  H  X  analz H"
  | Fst:     "X,Y  analz H  X  analz H"
  | Snd:     "X,Y  analz H  Y  analz H"
  | Decrypt [dest]: 
    "Crypt K X  analz H; Key(invKey K)  analz H  X  analz H"


text‹Monotonicity; Lemma 1 of Lowe's paper›
lemma analz_mono_aux: "G  H; X  analz G  X  analz H"
  by (erule analz.induct) (auto dest: analz.Fst analz.Snd) 

lemma analz_mono: "GH  analz(G)  analz(H)"
  using analz_mono_aux by blast

text‹Making it safe speeds up proofs›
lemma MPair_analz [elim!]:
  "X,Y  analz H;        
    X  analz H; Y  analz H  P  P"
  by (blast dest: analz.Fst analz.Snd)

lemma analz_increasing: "H  analz(H)"
  by blast

lemma analz_into_parts: "X  analz H  X  parts H"
  by (erule analz.induct) auto

lemma analz_subset_parts: "analz H  parts H"
  using analz_into_parts by blast

lemma analz_parts [simp]: "analz (parts H) = parts H"
  using analz_subset_parts by blast

lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]


lemma parts_analz [simp]: "parts (analz H) = parts H"
  by (metis analz_increasing analz_subset_parts parts_idem parts_mono subset_antisym)

lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]

subsubsection‹General equational properties›

lemma analz_empty [simp]: "analz{} = {}"
  using analz_parts by fastforce

text‹Converse fails: we can analz more from the union than from the 
  separate parts, as a key in one might decrypt a message in the other›
lemma analz_Un: "analz(G)  analz(H)  analz(G  H)"
  by (intro Un_least analz_mono Un_upper1 Un_upper2)

lemma analz_insert: "insert X (analz H)  analz(insert X H)"
  by (blast intro: analz_mono [THEN [2] rev_subsetD])

subsubsection‹Rewrite rules for pulling out atomic messages›

lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]

lemma analz_insert_Agent [simp]:
  "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

lemma analz_insert_Nonce [simp]:
  "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

lemma analz_insert_Number [simp]:
  "analz (insert (Number N) H) = insert (Number N) (analz H)"
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

lemma analz_insert_Hash [simp]:
  "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

text‹Can only pull out Keys if they are not needed to decrypt the rest›
lemma analz_insert_Key [simp]: 
  "K  keysFor (analz H)    
          analz (insert (Key K) H) = insert (Key K) (analz H)"
  unfolding keysFor_def
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

lemma analz_insert_MPair [simp]:
  "analz (insert X,Y H) = insert X,Y (analz (insert X (insert Y H)))"
proof -
  have "Z  analz (insert X, Y H)  Z  insert X, Y (analz (insert X (insert Y H)))" for Z
    by (induction rule: analz.induct) auto
  moreover have "Z  analz (insert X (insert Y H))  Z  analz (insert X, Y H)" for Z
    by (induction rule: analz.induct) (use analz.Inj in blast)+
  ultimately show ?thesis
    by auto
qed

text‹Can pull out encrypted message if the Key is not known›
lemma analz_insert_Crypt:
  "Key (invKey K)  analz H 
       analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
  apply (rule analz_insert_eq_I) 
  apply (erule analz.induct, auto) 
  done

lemma analz_insert_Decrypt:
  assumes "Key (invKey K)  analz H"
  shows "analz (insert (Crypt K X) H) = insert (Crypt K X) (analz (insert X H))"
proof -
  have "Y  analz (insert (Crypt K X) H)  Y  insert (Crypt K X) (analz (insert X H))" for Y
    by (induction rule: analz.induct) auto
  moreover
  have "Y  analz (insert X H)  Y  analz (insert (Crypt K X) H)" for Y
  proof (induction rule: analz.induct)
    case (Inj X)
    then show ?case
      by (metis analz.Decrypt analz.Inj analz_insertI assms insert_iff)
  qed auto
  ultimately show ?thesis
    by auto
qed

text‹Case analysis: either the message is secure, or it is not! Effective,
but can cause subgoals to blow up! Use with if_split›; apparently
split_tac› does not cope with patterns such as termanalz (insert
(Crypt K X) H) 
lemma analz_Crypt_if [simp]:
  "analz (insert (Crypt K X) H) =                 
          (if (Key (invKey K)  analz H)                 
           then insert (Crypt K X) (analz (insert X H))  
           else insert (Crypt K X) (analz H))"
  by (simp add: analz_insert_Crypt analz_insert_Decrypt)


text‹This rule supposes "for the sake of argument" that we have the key.›
lemma analz_insert_Crypt_subset:
  "analz (insert (Crypt K X) H)    
           insert (Crypt K X) (analz (insert X H))"
  apply (rule subsetI)
  apply (erule analz.induct, auto)
  done


lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
  apply auto
  apply (erule analz.induct, auto)
  done


subsubsection‹Idempotence and transitivity›

lemma analz_analzD [dest!]: "X  analz (analz H)  X  analz H"
  by (erule analz.induct, blast+)

lemma analz_idem [simp]: "analz (analz H) = analz H"
  by blast

lemma analz_subset_iff [simp]: "(analz G  analz H) = (G  analz H)"
  by (metis analz_idem analz_increasing analz_mono subset_trans)

lemma analz_trans: "X  analz G;  G  analz H  X  analz H"
  by (drule analz_mono, blast)

text‹Cut; Lemma 2 of Lowe›
lemma analz_cut: "Y  analz (insert X H);  X  analz H  Y  analz H"
  by (erule analz_trans, blast)

(*Cut can be proved easily by induction on
   "Y: analz (insert X H) ⟹ X: analz H ⟶ Y: analz H"
*)

text‹This rewrite rule helps in the simplification of messages that involve
  the forwarding of unknown components (X).  Without it, removing occurrences
  of X can be very complicated.›
lemma analz_insert_eq: "X  analz H  analz (insert X H) = analz H"
  by (metis analz_cut analz_insert_eq_I insert_absorb)


text‹A congruence rule for "analz"›

lemma analz_subset_cong:
  "analz G  analz G'; analz H  analz H' 
       analz (G  H)  analz (G'  H')"
  by (metis Un_mono analz_Un analz_subset_iff subset_trans)

lemma analz_cong:
  "analz G = analz G'; analz H = analz H' 
       analz (G  H) = analz (G'  H')"
  by (intro equalityI analz_subset_cong, simp_all) 

lemma analz_insert_cong:
  "analz H = analz H'  analz(insert X H) = analz(insert X H')"
  by (force simp only: insert_def intro!: analz_cong)

text‹If there are no pairs or encryptions then analz does nothing›
lemma analz_trivial:
  "X Y. X,Y  H;  X K. Crypt K X  H  analz H = H"
  apply safe
   apply (erule analz.induct, blast+)
  done


subsection‹Inductive relation "synth"›

text‹Inductive definition of "synth" -- what can be built up from a set of
    messages.  A form of upward closure.  Pairs can be built, messages
    encrypted with known keys.  Agent names are public domain.
    Numbers can be guessed, but Nonces cannot be.›

inductive_set
  synth :: "msg set => msg set"
  for H :: "msg set"
  where
    Inj    [intro]:   "X  H  X  synth H"
  | Agent  [intro]:   "Agent agt  synth H"
  | Number [intro]:   "Number n   synth H"
  | Hash   [intro]:   "X  synth H  Hash X  synth H"
  | MPair  [intro]:   "X  synth H;  Y  synth H  X,Y  synth H"
  | Crypt  [intro]:   "X  synth H;  Key(K)  H  Crypt K X  synth H"

text‹Monotonicity›
lemma synth_mono: "GH  synth(G)  synth(H)"
  by (auto, erule synth.induct, auto)  

text‹NO Agent_synth›, as any Agent name can be synthesized.  
  The same holds for termNumber

inductive_simps synth_simps [iff]:
  "Nonce n  synth H"
  "Key K  synth H"
  "Hash X  synth H"
  "X,Y  synth H"
  "Crypt K X  synth H"

lemma synth_increasing: "H  synth(H)"
  by blast

subsubsection‹Unions›

text‹Converse fails: we can synth more from the union than from the 
  separate parts, building a compound message using elements of each.›
lemma synth_Un: "synth(G)  synth(H)  synth(G  H)"
  by (intro Un_least synth_mono Un_upper1 Un_upper2)

lemma synth_insert: "insert X (synth H)  synth(insert X H)"
  by (blast intro: synth_mono [THEN [2] rev_subsetD])

subsubsection‹Idempotence and transitivity›

lemma synth_synthD [dest!]: "X  synth (synth H)  X  synth H"
  by (erule synth.induct, auto)

lemma synth_idem: "synth (synth H) = synth H"
  by blast

lemma synth_subset_iff [simp]: "(synth G  synth H) = (G  synth H)"
  by (metis subset_trans synth_idem synth_increasing synth_mono)

lemma synth_trans: "X  synth G;  G  synth H  X  synth H"
  by (drule synth_mono, blast)

text‹Cut; Lemma 2 of Lowe›
lemma synth_cut: "Y  synth (insert X H);  X  synth H  Y  synth H"
  by (erule synth_trans, blast)

lemma Crypt_synth_eq [simp]:
  "Key K  H  (Crypt K X  synth H) = (Crypt K X  H)"
  by blast


lemma keysFor_synth [simp]: 
  "keysFor (synth H) = keysFor H  invKey`{K. Key K  H}"
  unfolding keysFor_def by blast


subsubsection‹Combinations of parts, analz and synth›

lemma parts_synth [simp]: "parts (synth H) = parts H  synth H"
proof -
  have "X  parts (synth H)  X  parts H  synth H" for X
    by (induction X rule: parts.induct) (auto intro: parts.intros)
  then show ?thesis
    by (meson parts_increasing parts_mono subsetI antisym sup_least synth_increasing)
qed

lemma analz_analz_Un [simp]: "analz (analz G  H) = analz (G  H)"
  using analz_cong by blast

lemma analz_synth_Un [simp]: "analz (synth G  H) = analz (G  H)  synth G"
proof -
  have "X  analz (synth G  H)  X  analz (G  H)  synth G" for X
    by (induction X rule: analz.induct) (auto intro: analz.intros)
  then show ?thesis
    by (metis analz_subset_iff le_sup_iff subsetI subset_antisym synth_subset_iff)
qed

lemma analz_synth [simp]: "analz (synth H) = analz H  synth H"
  by (metis Un_empty_right analz_synth_Un)


subsubsection‹For reasoning about the Fake rule in traces›

lemma parts_insert_subset_Un: "X  G  parts(insert X H)  parts G  parts H"
  by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono)

text‹More specifically for Fake. See also Fake_parts_sing› below›
lemma Fake_parts_insert:
  "X  synth (analz H)   
      parts (insert X H)  synth (analz H)  parts H"
  by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono 
      parts_synth synth_mono synth_subset_iff)

lemma Fake_parts_insert_in_Un:
  "Z  parts (insert X H);  X  synth (analz H) 
       Z  synth (analz H)  parts H"
  by (metis Fake_parts_insert subsetD)

texttermH is sometimes termKey ` KK  spies evs, so can't put 
  termG=H.›
lemma Fake_analz_insert:
  "X  synth (analz G)   
      analz (insert X H)  synth (analz G)  analz (G  H)"
  by (metis UnCI Un_commute Un_upper1 analz_analz_Un analz_mono analz_synth_Un insert_subset)

lemma analz_conj_parts [simp]:
  "(X  analz H  X  parts H) = (X  analz H)"
  by (blast intro: analz_subset_parts [THEN subsetD])

lemma analz_disj_parts [simp]:
  "(X  analz H | X  parts H) = (X  parts H)"
  by (blast intro: analz_subset_parts [THEN subsetD])

text‹Without this equation, other rules for synth and analz would yield
  redundant cases›
lemma MPair_synth_analz [iff]:
  "X,Y  synth (analz H)  X  synth (analz H)  Y  synth (analz H)"
  by blast

lemma Crypt_synth_analz:
  "Key K  analz H;  Key (invKey K)  analz H  
        (Crypt K X  synth (analz H)) = (X  synth (analz H))"
  by blast

lemma Hash_synth_analz [simp]:
  "X  synth (analz H)  
       (HashX,Y  synth (analz H)) = (HashX,Y  analz H)"
  by blast


subsection‹HPair: a combination of Hash and MPair›

subsubsection‹Freeness›

lemma Agent_neq_HPair: "Agent A  Hash[X] Y"
  unfolding HPair_def by simp

lemma Nonce_neq_HPair: "Nonce N  Hash[X] Y"
  unfolding HPair_def by simp

lemma Number_neq_HPair: "Number N  Hash[X] Y"
  unfolding HPair_def by simp

lemma Key_neq_HPair: "Key K  Hash[X] Y"
  unfolding HPair_def by simp

lemma Hash_neq_HPair: "Hash Z  Hash[X] Y"
  unfolding HPair_def by simp

lemma Crypt_neq_HPair: "Crypt K X'  Hash[X] Y"
  unfolding HPair_def by simp

lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair 
  Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair

declare HPair_neqs [iff]
declare HPair_neqs [symmetric, iff]

lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X  Y'=Y)"
  by (simp add: HPair_def)

lemma MPair_eq_HPair [iff]:
  "(X',Y' = Hash[X] Y) = (X' = HashX,Y  Y'=Y)"
  by (simp add: HPair_def)

lemma HPair_eq_MPair [iff]:
  "(Hash[X] Y = X',Y') = (X' = HashX,Y  Y'=Y)"
  by (auto simp add: HPair_def)


subsubsection‹Specialized laws, proved in terms of those for Hash and MPair›

lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H"
  by (simp add: HPair_def)

lemma parts_insert_HPair [simp]: 
  "parts (insert (Hash[X] Y) H) =  
     insert (Hash[X] Y) (insert (HashX,Y) (parts (insert Y H)))"
  by (simp add: HPair_def)

lemma analz_insert_HPair [simp]: 
  "analz (insert (Hash[X] Y) H) =  
     insert (Hash[X] Y) (insert (HashX,Y) (analz (insert Y H)))"
  by (simp add: HPair_def)

lemma HPair_synth_analz [simp]:
  "X  synth (analz H)  
     (Hash[X] Y  synth (analz H)) =  
        (Hash X, Y  analz H  Y  synth (analz H))"
  by (auto simp add: HPair_def)


text‹We do NOT want Crypt... messages broken up in protocols!!›
declare parts.Body [rule del]


text‹Rewrites to push in Key and Crypt messages, so that other messages can
    be pulled out using the analz_insert› rules›

lemmas pushKeys =
  insert_commute [of "Key K" "Agent C"]
  insert_commute [of "Key K" "Nonce N"]
  insert_commute [of "Key K" "Number N"]
  insert_commute [of "Key K" "Hash X"]
  insert_commute [of "Key K" "MPair X Y"]
  insert_commute [of "Key K" "Crypt X K'"]
  for K C N X Y K'

lemmas pushCrypts =
  insert_commute [of "Crypt X K" "Agent C"]
  insert_commute [of "Crypt X K" "Agent C"]
  insert_commute [of "Crypt X K" "Nonce N"]
  insert_commute [of "Crypt X K" "Number N"]
  insert_commute [of "Crypt X K" "Hash X'"]
  insert_commute [of "Crypt X K" "MPair X' Y"]
  for X K C N X' Y

text‹Cannot be added with [simp]› -- messages should not always be
  re-ordered.›
lemmas pushes = pushKeys pushCrypts


subsection‹The set of key-free messages›

(*Note that even the encryption of a key-free message remains key-free.
  This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *)

inductive_set
  keyfree :: "msg set"
  where
    Agent:  "Agent A  keyfree"
  | Number: "Number N  keyfree"
  | Nonce:  "Nonce N  keyfree"
  | Hash:   "Hash X  keyfree"
  | MPair:  "X  keyfree;  Y  keyfree  X,Y  keyfree"
  | Crypt:  "X  keyfree  Crypt K X  keyfree"


declare keyfree.intros [intro] 

inductive_cases keyfree_KeyE: "Key K  keyfree"
inductive_cases keyfree_MPairE: "X,Y  keyfree"
inductive_cases keyfree_CryptE: "Crypt K X  keyfree"

lemma parts_keyfree: "parts (keyfree)  keyfree"
  by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE)

(*The key-free part of a set of messages can be removed from the scope of the analz operator.*)
lemma analz_keyfree_into_Un: "X  analz (G  H); G  keyfree  X  parts G  analz H"
proof (induction rule: analz.induct)
  case (Decrypt K X)
  then show ?case
    by (metis Un_iff analz.Decrypt in_mono keyfree_KeyE parts.Body parts_keyfree parts_mono)
qed (auto dest: parts.Body)

subsection‹Tactics useful for many protocol proofs›
ML
  (*Analysis of Fake cases.  Also works for messages that forward unknown parts,
  but this application is no longer necessary if analz_insert_eq is used.
  DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)

fun impOfSubs th = th RSN (2, @{thm rev_subsetD})

(*Apply rules to break down assumptions of the form
  Y ∈ parts(insert X H)  and  Y ∈ analz(insert X H)
*)
fun Fake_insert_tac ctxt = 
    dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert},
                  impOfSubs @{thm Fake_parts_insert}] THEN'
    eresolve_tac ctxt [asm_rl, @{thm synth.Inj}];

fun Fake_insert_simp_tac ctxt i = 
  REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i;

fun atomic_spy_analz_tac ctxt =
  SELECT_GOAL
   (Fake_insert_simp_tac ctxt 1 THEN
    IF_UNSOLVED
      (Blast.depth_tac
        (ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1));

fun spy_analz_tac ctxt i =
  DETERM
   (SELECT_GOAL
     (EVERY 
      [  (*push in occurrences of X...*)
       (REPEAT o CHANGED)
         (Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] []
           (insert_commute RS ssubst) 1),
       (*...allowing further simplifications*)
       simp_tac ctxt 1,
       REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])),
       DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);

text‹By default only o_apply› is built-in.  But in the presence of
eta-expansion this means that some terms displayed as termf o g will be
rewritten, and others will not!›
declare o_def [simp]


lemma Crypt_notin_image_Key [simp]: "Crypt K X  Key ` A"
  by auto

lemma Hash_notin_image_Key [simp] :"Hash X  Key ` A"
  by auto

lemma synth_analz_mono: "GH  synth (analz(G))  synth (analz(H))"
  by (iprover intro: synth_mono analz_mono) 

lemma Fake_analz_eq [simp]:
  "X  synth(analz H)  synth (analz (insert X H)) = synth (analz H)"
  by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute 
      subset_insertI synth_analz_mono synth_increasing synth_subset_iff)

text‹Two generalizations of analz_insert_eq›
lemma gen_analz_insert_eq [rule_format]:
  "X  analz H  G. H  G  analz (insert X G) = analz G"
  by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])

lemma synth_analz_insert_eq:
  "X  synth (analz H); H  G
       (Key K  analz (insert X G))  (Key K  analz G)"
proof (induction arbitrary: G rule: synth.induct)
  case (Inj X)
  then show ?case
    using gen_analz_insert_eq by presburger 
qed (simp_all add: subset_eq)

lemma Fake_parts_sing:
  "X  synth (analz H)  parts{X}  synth (analz H)  parts H"
  by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans)

lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]

method_setup spy_analz = Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)
  "for proving the Fake case when analz is involved"

method_setup atomic_spy_analz = Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)
  "for debugging spy_analz"

method_setup Fake_insert_simp = Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)
  "for debugging spy_analz"

end