Theory Residuals

(*  Title:      ZF/Resid/Residuals.thy
    Author:     Ole Rasmussen
    Copyright   1995  University of Cambridge
*)

theory Residuals imports Substitution begin

consts
  Sres          :: "i"

abbreviation
  "residuals(u,v,w)  <u,v,w>  Sres"

inductive
  domains       "Sres"  "redexes*redexes*redexes"
  intros
    Res_Var:    "n  nat  residuals(Var(n),Var(n),Var(n))"
    Res_Fun:    "residuals(u,v,w)   
                     residuals(Fun(u),Fun(v),Fun(w))"
    Res_App:    "residuals(u1,v1,w1);   
                   residuals(u2,v2,w2); b  bool   
                 residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))"
    Res_redex:  "residuals(u1,v1,w1);   
                   residuals(u2,v2,w2); b  bool   
                 residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)"
  type_intros    subst_type nat_typechecks redexes.intros bool_typechecks

definition
  res_func      :: "[i,i]i"     (infixl |> 70)  where
  "u |> v  THE w. residuals(u,v,w)"


subsection‹Setting up rule lists›

declare Sres.intros [intro]
declare Sreg.intros [intro]
declare subst_type [intro]

inductive_cases [elim!]:
  "residuals(Var(n),Var(n),v)"
  "residuals(Fun(t),Fun(u),v)"
  "residuals(App(b, u1, u2), App(0, v1, v2),v)"
  "residuals(App(b, u1, u2), App(1, Fun(v1), v2),v)"
  "residuals(Var(n),u,v)"
  "residuals(Fun(t),u,v)"
  "residuals(App(b, u1, u2), w,v)"
  "residuals(u,Var(n),v)"
  "residuals(u,Fun(t),v)"
  "residuals(w,App(b, u1, u2),v)"


inductive_cases [elim!]:
  "Var(n)  u"
  "Fun(n)  u"
  "u  Fun(n)"
  "App(1,Fun(t),a)  u"
  "App(0,t,a)  u"

inductive_cases [elim!]:
  "Fun(t)  redexes"

declare Sres.intros [simp]

subsection‹residuals is a  partial function›

lemma residuals_function [rule_format]:
     "residuals(u,v,w)  w1. residuals(u,v,w1)  w1 = w"
by (erule Sres.induct, force+)

lemma residuals_intro [rule_format]:
     "u  v  regular(v)  (w. residuals(u,v,w))"
by (erule Scomp.induct, force+)

lemma comp_resfuncD:
     "u  v;  regular(v)  residuals(u, v, THE w. residuals(u, v, w))"
apply (frule residuals_intro, assumption, clarify)
apply (subst the_equality)
apply (blast intro: residuals_function)+
done

subsection‹Residual function›

lemma res_Var [simp]: "n  nat  Var(n) |> Var(n) = Var(n)"
by (unfold res_func_def, blast)

lemma res_Fun [simp]: 
    "s  t; regular(t) Fun(s) |> Fun(t) = Fun(s |> t)"
  unfolding res_func_def
apply (blast intro: comp_resfuncD residuals_function) 
done

lemma res_App [simp]: 
    "s  u; regular(u); t  v; regular(v); b  bool
      App(b,s,t) |> App(0,u,v) = App(b, s |> u, t |> v)"
  unfolding res_func_def 
apply (blast dest!: comp_resfuncD intro: residuals_function)
done

lemma res_redex [simp]: 
    "s  u; regular(u); t  v; regular(v); b  bool
      App(b,Fun(s),t) |> App(1,Fun(u),v) = (t |> v)/ (s |> u)"
  unfolding res_func_def
apply (blast elim!: redexes.free_elims dest!: comp_resfuncD 
             intro: residuals_function)
done

lemma resfunc_type [simp]:
     "s  t; regular(t) regular(t)  s |> t  redexes"
  by (erule Scomp.induct, auto)

subsection‹Commutation theorem›

lemma sub_comp [simp]: "u  v  u  v"
by (erule Ssub.induct, simp_all)

lemma sub_preserve_reg [rule_format, simp]:
     "u  v  regular(v)  regular(u)"
by (erule Ssub.induct, auto)

lemma residuals_lift_rec: "u  v; k  nat regular(v) (n  nat.   
         lift_rec(u,n) |> lift_rec(v,n) = lift_rec(u |> v,n))"
apply (erule Scomp.induct, safe)
apply (simp_all add: lift_rec_Var subst_Var lift_subst)
done

lemma residuals_subst_rec:
     "u1  u2   v1 v2. v1  v2  regular(v2)  regular(u2)  
                  (n  nat. subst_rec(v1,u1,n) |> subst_rec(v2,u2,n) =  
                    subst_rec(v1 |> v2, u1 |> u2,n))"
apply (erule Scomp.induct, safe)
apply (simp_all add: lift_rec_Var subst_Var residuals_lift_rec)
apply (drule_tac psi = "x. P(x)" for P in asm_rl)
apply (simp add: substitution)
done


lemma commutation [simp]:
     "u1  u2; v1  v2; regular(u2); regular(v2)
       (v1/u1) |> (v2/u2) = (v1 |> v2)/(u1 |> u2)"
by (simp add: residuals_subst_rec)


subsection‹Residuals are comp and regular›

lemma residuals_preserve_comp [rule_format, simp]:
     "u  v  w. u  w  v  w  regular(w)  (u|>w)  (v|>w)"
by (erule Scomp.induct, force+)

lemma residuals_preserve_reg [rule_format, simp]:
     "u  v  regular(u)  regular(v)  regular(u|>v)"
apply (erule Scomp.induct, auto)
done

subsection‹Preservation lemma›

lemma union_preserve_comp: "u  v  v  (u  v)"
by (erule Scomp.induct, simp_all)

lemma preservation [rule_format]:
     "u  v  regular(v)  u|>v = (u  v)|>v"
apply (erule Scomp.induct, safe)
apply (drule_tac [3] psi = "Fun (u) |> v = w" for u v w in asm_rl)
apply (auto simp add: union_preserve_comp comp_sym_iff)
done


declare sub_comp [THEN comp_sym, simp]

subsection‹Prism theorem›

(* Having more assumptions than needed -- removed below  *)
lemma prism_l [rule_format]:
     "v  u   
       regular(u)  (w. w  v  w  u    
                            w |> u = (w|>v) |> (u|>v))"
by (erule Ssub.induct, force+)

lemma prism: "v  u; regular(u); w  v  w |> u = (w|>v) |> (u|>v)"
apply (rule prism_l)
apply (rule_tac [4] comp_trans, auto)
done


subsection‹Levy's Cube Lemma›

lemma cube: "u  v; regular(v); regular(u); w  u   
           (w|>u) |> (v|>u) = (w|>v) |> (u|>v)"
apply (subst preservation [of u], assumption, assumption)
apply (subst preservation [of v], erule comp_sym, assumption)
apply (subst prism [symmetric, of v])
apply (simp add: union_r comp_sym_iff)
apply (simp add: union_preserve_regular comp_sym_iff)
apply (erule comp_trans, assumption)
apply (simp add: prism [symmetric] union_l union_preserve_regular 
                 comp_sym_iff union_sym)
done


subsection‹paving theorem›

lemma paving: "w  u; w  v; regular(u); regular(v)  
           uv vu. (w|>u) |> vu = (w|>v) |> uv  (w|>u)  vu 
             regular(vu)  (w|>v)  uv  regular(uv)"
apply (subgoal_tac "u  v")
apply (safe intro!: exI)
apply (rule cube)
apply (simp_all add: comp_sym_iff)
apply (blast intro: residuals_preserve_comp comp_trans comp_sym)+
done


end