Theory Substitution

(*  Title:      ZF/Resid/Substitution.thy
    Author:     Ole Rasmussen, University of Cambridge
*)

theory Substitution imports Redex begin

(** The clumsy _aux functions are required because other arguments vary
    in the recursive calls ***)

consts
  lift_aux      :: "ii"
primrec
  "lift_aux(Var(i)) = (λk  nat. if i<k then Var(i) else Var(succ(i)))"

  "lift_aux(Fun(t)) = (λk  nat. Fun(lift_aux(t) ` succ(k)))"

  "lift_aux(App(b,f,a)) = (λk  nat. App(b, lift_aux(f)`k, lift_aux(a)`k))"

definition
  lift_rec      :: "[i,i] i"  where
    "lift_rec(r,k)  lift_aux(r)`k"

abbreviation
  lift :: "ii" where
  "lift(r)  lift_rec(r,0)"


consts
  subst_aux     :: "ii"
primrec
  "subst_aux(Var(i)) =
     (λr  redexes. λk  nat. if k<i then Var(i #- 1)
                                else if k=i then r else Var(i))"
  "subst_aux(Fun(t)) =
     (λr  redexes. λk  nat. Fun(subst_aux(t) ` lift(r) ` succ(k)))"

  "subst_aux(App(b,f,a)) =
     (λr  redexes. λk  nat. App(b, subst_aux(f)`r`k, subst_aux(a)`r`k))"

definition
  subst_rec     :: "[i,i,i] i"        (**NOTE THE ARGUMENT ORDER BELOW**)  where
    "subst_rec(u,r,k)  subst_aux(r)`u`k"

abbreviation
  subst :: "[i,i]i"  (infixl '/ 70)  where
  "u/v  subst_rec(u,v,0)"



(* ------------------------------------------------------------------------- *)
(*   Arithmetic extensions                                                   *)
(* ------------------------------------------------------------------------- *)

lemma gt_not_eq: "p < n  np"
by blast

lemma succ_pred [rule_format, simp]: "j  nat  i < j  succ(j #- 1) = j"
by (induct_tac "j", auto)

lemma lt_pred: "succ(x)<n; n  nat  x < n #- 1 "
apply (rule succ_leE)
apply (simp add: succ_pred)
done

lemma gt_pred: "n < succ(x); p<n; n  nat  n #- 1 < x "
apply (rule succ_leE)
apply (simp add: succ_pred)
done


declare not_lt_iff_le [simp] if_P [simp] if_not_P [simp]


(* ------------------------------------------------------------------------- *)
(*     lift_rec equality rules                                               *)
(* ------------------------------------------------------------------------- *)
lemma lift_rec_Var:
     "n  nat  lift_rec(Var(i),n) = (if i<n then Var(i) else Var(succ(i)))"
by (simp add: lift_rec_def)

lemma lift_rec_le [simp]:
     "i  nat; ki  lift_rec(Var(i),k) = Var(succ(i))"
by (simp add: lift_rec_def le_in_nat)

lemma lift_rec_gt [simp]: "k  nat; i<k  lift_rec(Var(i),k) = Var(i)"
by (simp add: lift_rec_def)

lemma lift_rec_Fun [simp]:
     "k  nat  lift_rec(Fun(t),k) = Fun(lift_rec(t,succ(k)))"
by (simp add: lift_rec_def)

lemma lift_rec_App [simp]:
     "k  nat  lift_rec(App(b,f,a),k) = App(b,lift_rec(f,k),lift_rec(a,k))"
by (simp add: lift_rec_def)


(* ------------------------------------------------------------------------- *)
(*    substitution quality rules                                             *)
(* ------------------------------------------------------------------------- *)

lemma subst_Var:
     "k  nat; u  redexes
       subst_rec(u,Var(i),k) =
          (if k<i then Var(i #- 1) else if k=i then u else Var(i))"
by (simp add: subst_rec_def gt_not_eq leI)


lemma subst_eq [simp]:
     "n  nat; u  redexes  subst_rec(u,Var(n),n) = u"
by (simp add: subst_rec_def)

lemma subst_gt [simp]:
     "u  redexes; p  nat; p<n  subst_rec(u,Var(n),p) = Var(n #- 1)"
by (simp add: subst_rec_def)

lemma subst_lt [simp]:
     "u  redexes; p  nat; n<p  subst_rec(u,Var(n),p) = Var(n)"
by (simp add: subst_rec_def gt_not_eq leI lt_nat_in_nat)

lemma subst_Fun [simp]:
     "p  nat; u  redexes
       subst_rec(u,Fun(t),p) = Fun(subst_rec(lift(u),t,succ(p))) "
by (simp add: subst_rec_def)

lemma subst_App [simp]:
     "p  nat; u  redexes
       subst_rec(u,App(b,f,a),p) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))"
by (simp add: subst_rec_def)


lemma lift_rec_type [rule_format, simp]:
     "u  redexes  k  nat. lift_rec(u,k)  redexes"
apply (erule redexes.induct)
apply (simp_all add: lift_rec_Var lift_rec_Fun lift_rec_App)
done

lemma subst_type [rule_format, simp]:
     "v  redexes   n  nat. u  redexes. subst_rec(u,v,n)  redexes"
apply (erule redexes.induct)
apply (simp_all add: subst_Var lift_rec_type)
done


(* ------------------------------------------------------------------------- *)
(*    lift and  substitution proofs                                          *)
(* ------------------------------------------------------------------------- *)

(*The i∈nat is redundant*)
lemma lift_lift_rec [rule_format]:
     "u  redexes
       n  nat. i  nat. in 
           (lift_rec(lift_rec(u,i),succ(n)) = lift_rec(lift_rec(u,n),i))"
apply (erule redexes.induct, auto)
apply (case_tac "n < i")
apply (frule lt_trans2, assumption)
apply (simp_all add: lift_rec_Var leI)
done

lemma lift_lift:
     "u  redexes; n  nat
       lift_rec(lift(u),succ(n)) = lift(lift_rec(u,n))"
by (simp add: lift_lift_rec)

lemma lt_not_m1_lt: "m < n; n  nat; m  nat ¬ n #- 1 < m"
by (erule natE, auto)

lemma lift_rec_subst_rec [rule_format]:
     "v  redexes 
       n  nat. m  nat. u  redexes. nm
          lift_rec(subst_rec(u,v,n),m) =
               subst_rec(lift_rec(u,m),lift_rec(v,succ(m)),n)"
apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u)
apply (case_tac "n < n'")
 apply (frule_tac j = n' in lt_trans2, assumption)
 apply (simp add: leI, simp)
apply (erule_tac j=n in leE)
apply (auto simp add: lift_rec_Var subst_Var leI lt_not_m1_lt)
done


lemma lift_subst:
     "v  redexes; u  redexes; n  nat
       lift_rec(u/v,n) = lift_rec(u,n)/lift_rec(v,succ(n))"
by (simp add: lift_rec_subst_rec)


lemma lift_rec_subst_rec_lt [rule_format]:
     "v  redexes 
       n  nat. m  nat. u  redexes. mn
          lift_rec(subst_rec(u,v,n),m) =
               subst_rec(lift_rec(u,m),lift_rec(v,m),succ(n))"
apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u)
apply (case_tac "n < n'")
apply (case_tac "n < m")
apply (simp_all add: leI)
apply (erule_tac i=n' in leE)
apply (frule lt_trans1, assumption)
apply (simp_all add: succ_pred leI gt_pred)
done


lemma subst_rec_lift_rec [rule_format]:
     "u  redexes 
        n  nat. v  redexes. subst_rec(v,lift_rec(u,n),n) = u"
apply (erule redexes.induct, auto)
apply (case_tac "n < na", auto)
done

lemma subst_rec_subst_rec [rule_format]:
     "v  redexes 
        m  nat. n  nat. u  redexes. w  redexes. mn 
          subst_rec(subst_rec(w,u,n),subst_rec(lift_rec(w,m),v,succ(n)),m) =
          subst_rec(w,subst_rec(u,v,m),n)"
apply (erule redexes.induct)
apply (simp_all add: lift_lift [symmetric] lift_rec_subst_rec_lt, safe)
apply (rename_tac n' u w)
apply (case_tac "n ≤ succ(n') ")
 apply (erule_tac i = n in leE)
 apply (simp_all add: succ_pred subst_rec_lift_rec leI)
 apply (case_tac "n < m")
  apply (frule lt_trans2, assumption, simp add: gt_pred)
 apply simp
 apply (erule_tac j = n in leE, simp add: gt_pred)
 apply (simp add: subst_rec_lift_rec)
(*final case*)
apply (frule nat_into_Ord [THEN le_refl, THEN lt_trans], assumption)
apply (erule leE)
 apply (frule succ_leI [THEN lt_trans], assumption)
 apply (frule_tac i = m in nat_into_Ord [THEN le_refl, THEN lt_trans],
        assumption)
 apply (simp_all add: succ_pred lt_pred)
done


lemma substitution:
     "v  redexes; u  redexes; w  redexes; n  nat
       subst_rec(w,u,n)/subst_rec(lift(w),v,succ(n)) = subst_rec(w,u/v,n)"
by (simp add: subst_rec_subst_rec)


(* ------------------------------------------------------------------------- *)
(*          Preservation lemmas                                              *)
(*          Substitution preserves comp and regular                          *)
(* ------------------------------------------------------------------------- *)


lemma lift_rec_preserve_comp [rule_format, simp]:
     "u  v  m  nat. lift_rec(u,m)  lift_rec(v,m)"
by (erule Scomp.induct, simp_all add: comp_refl)

lemma subst_rec_preserve_comp [rule_format, simp]:
     "u2  v2  m  nat. u1  redexes. v1  redexes.
                  u1  v1 subst_rec(u1,u2,m)  subst_rec(v1,v2,m)"
by (erule Scomp.induct,
    simp_all add: subst_Var lift_rec_preserve_comp comp_refl)

lemma lift_rec_preserve_reg [simp]:
     "regular(u)  m  nat. regular(lift_rec(u,m))"
by (erule Sreg.induct, simp_all add: lift_rec_Var)

lemma subst_rec_preserve_reg [simp]:
     "regular(v) 
        m  nat. u  redexes. regular(u)regular(subst_rec(u,v,m))"
by (erule Sreg.induct, simp_all add: subst_Var lift_rec_preserve_reg)

end