Theory NSP_Bad
section‹Analyzing the Needham-Schroeder Public-Key Protocol in UNITY›
theory NSP_Bad imports "HOL-Auth.Public" "../UNITY_Main" begin
text‹This is the flawed version, vulnerable to Lowe's attack.
From page 260 of
Burrows, Abadi and Needham. A Logic of Authentication.
Proc. Royal Soc. 426 (1989).
›
type_synonym state = "event list"
definition
Fake :: "(state*state) set"
where "Fake = {(s,s').
∃B X. s' = Says Spy B X # s
& X ∈ synth (analz (spies s))}"
definition
NS1 :: "(state*state) set"
where "NS1 = {(s1,s').
∃A1 B NA.
s' = Says A1 B (Crypt (pubK B) ⦃Nonce NA, Agent A1⦄) # s1
& Nonce NA ∉ used s1}"
definition
NS2 :: "(state*state) set"
where "NS2 = {(s2,s').
∃A' A2 B NA NB.
s' = Says B A2 (Crypt (pubK A2) ⦃Nonce NA, Nonce NB⦄) # s2
& Says A' B (Crypt (pubK B) ⦃Nonce NA, Agent A2⦄) ∈ set s2
& Nonce NB ∉ used s2}"
definition
NS3 :: "(state*state) set"
where "NS3 = {(s3,s').
∃A3 B' B NA NB.
s' = Says A3 B (Crypt (pubK B) (Nonce NB)) # s3
& Says A3 B (Crypt (pubK B) ⦃Nonce NA, Agent A3⦄) ∈ set s3
& Says B' A3 (Crypt (pubK A3) ⦃Nonce NA, Nonce NB⦄) ∈ set s3}"
definition Nprg :: "state program" where
"Nprg = mk_total_program({[]}, {Fake, NS1, NS2, NS3}, UNIV)"
declare spies_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
text‹For other theories, e.g. Mutex and Lift, using [iff] slows proofs down.
Here, it facilitates re-use of the Auth proofs.›
declare Fake_def [THEN def_act_simp, iff]
declare NS1_def [THEN def_act_simp, iff]
declare NS2_def [THEN def_act_simp, iff]
declare NS3_def [THEN def_act_simp, iff]
declare Nprg_def [THEN def_prg_Init, simp]
text‹A "possibility property": there are traces that reach the end.
Replace by LEADSTO proof!›
lemma "A ≠ B ==>
∃NB. ∃s ∈ reachable Nprg. Says A B (Crypt (pubK B) (Nonce NB)) ∈ set s"
apply (intro exI bexI)
apply (rule_tac [2] act = "totalize_act NS3" in reachable.Acts)
apply (rule_tac [3] act = "totalize_act NS2" in reachable.Acts)
apply (rule_tac [4] act = "totalize_act NS1" in reachable.Acts)
apply (rule_tac [5] reachable.Init)
apply (simp_all (no_asm_simp) add: Nprg_def totalize_act_def)
apply auto
done
subsection‹Inductive Proofs about \<^term>‹ns_public››
lemma ns_constrainsI:
"(!!act s s'. [| act ∈ {Id, Fake, NS1, NS2, NS3};
(s,s') ∈ act; s ∈ A |] ==> s' ∈ A')
==> Nprg ∈ A co A'"
apply (simp add: Nprg_def mk_total_program_def)
apply (rule constrainsI, auto)
done
text‹This ML code does the inductions directly.›
ML‹
fun ns_constrains_tac ctxt i =
SELECT_GOAL
(EVERY
[REPEAT (eresolve_tac ctxt @{thms Always_ConstrainsI} 1),
REPEAT (resolve_tac ctxt [@{thm StableI}, @{thm stableI}, @{thm constrains_imp_Constrains}] 1),
resolve_tac ctxt @{thms ns_constrainsI} 1,
full_simp_tac ctxt 1,
REPEAT (FIRSTGOAL (eresolve_tac ctxt [disjE])),
ALLGOALS (clarify_tac (ctxt delrules [impI, @{thm impCE}])),
REPEAT (FIRSTGOAL (analz_mono_contra_tac ctxt)),
ALLGOALS (asm_simp_tac ctxt)]) i;
fun ns_induct_tac ctxt =
(SELECT_GOAL o EVERY)
[resolve_tac ctxt @{thms AlwaysI} 1,
force_tac ctxt 1,
resolve_tac ctxt [@{thm Always_reachable} RS @{thm Always_ConstrainsI} RS @{thm StableI}] 1,
ns_constrains_tac ctxt 1];
›
method_setup ns_induct = ‹
Scan.succeed (SIMPLE_METHOD' o ns_induct_tac)›
"for inductive reasoning about the Needham-Schroeder protocol"
text‹Converts invariants into statements about reachable states›
lemmas Always_Collect_reachableD =
Always_includes_reachable [THEN subsetD, THEN CollectD]
text‹Spy never sees another agent's private key! (unless it's bad at start)›
lemma Spy_see_priK:
"Nprg ∈ Always {s. (Key (priK A) ∈ parts (spies s)) = (A ∈ bad)}"
apply ns_induct
apply blast
done
declare Spy_see_priK [THEN Always_Collect_reachableD, simp]
lemma Spy_analz_priK:
"Nprg ∈ Always {s. (Key (priK A) ∈ analz (spies s)) = (A ∈ bad)}"
by (rule Always_reachable [THEN Always_weaken], auto)
declare Spy_analz_priK [THEN Always_Collect_reachableD, simp]
subsection‹Authenticity properties obtained from NS2›
text‹It is impossible to re-use a nonce in both NS1 and NS2 provided the
nonce is secret. (Honest users generate fresh nonces.)›
lemma no_nonce_NS1_NS2:
"Nprg
∈ Always {s. Crypt (pubK C) ⦃NA', Nonce NA⦄ ∈ parts (spies s) -->
Crypt (pubK B) ⦃Nonce NA, Agent A⦄ ∈ parts (spies s) -->
Nonce NA ∈ analz (spies s)}"
apply ns_induct
apply (blast intro: analz_insertI)+
done
text‹Adding it to the claset slows down proofs...›
lemmas no_nonce_NS1_NS2_reachable =
no_nonce_NS1_NS2 [THEN Always_Collect_reachableD, rule_format]
text‹Unicity for NS1: nonce NA identifies agents A and B›
lemma unique_NA_lemma:
"Nprg
∈ Always {s. Nonce NA ∉ analz (spies s) -->
Crypt(pubK B) ⦃Nonce NA, Agent A⦄ ∈ parts(spies s) -->
Crypt(pubK B') ⦃Nonce NA, Agent A'⦄ ∈ parts(spies s) -->
A=A' & B=B'}"
apply ns_induct
apply auto
txt‹Fake, NS1 are non-trivial›
done
text‹Unicity for NS1: nonce NA identifies agents A and B›
lemma unique_NA:
"[| Crypt(pubK B) ⦃Nonce NA, Agent A⦄ ∈ parts(spies s);
Crypt(pubK B') ⦃Nonce NA, Agent A'⦄ ∈ parts(spies s);
Nonce NA ∉ analz (spies s);
s ∈ reachable Nprg |]
==> A=A' & B=B'"
by (blast dest: unique_NA_lemma [THEN Always_Collect_reachableD])
text‹Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure›
lemma Spy_not_see_NA:
"[| A ∉ bad; B ∉ bad |]
==> Nprg ∈ Always
{s. Says A B (Crypt(pubK B) ⦃Nonce NA, Agent A⦄) ∈ set s
--> Nonce NA ∉ analz (spies s)}"
apply ns_induct
txt‹NS3›
prefer 4 apply (blast intro: no_nonce_NS1_NS2_reachable)
txt‹NS2›
prefer 3 apply (blast dest: unique_NA)
txt‹NS1›
prefer 2 apply blast
txt‹Fake›
apply spy_analz
done
text‹Authentication for A: if she receives message 2 and has used NA
to start a run, then B has sent message 2.›
lemma A_trusts_NS2:
"[| A ∉ bad; B ∉ bad |]
==> Nprg ∈ Always
{s. Says A B (Crypt(pubK B) ⦃Nonce NA, Agent A⦄) ∈ set s &
Crypt(pubK A) ⦃Nonce NA, Nonce NB⦄ ∈ parts (knows Spy s)
--> Says B A (Crypt(pubK A) ⦃Nonce NA, Nonce NB⦄) ∈ set s}"
apply (insert Spy_not_see_NA [of A B NA], simp, ns_induct)
apply (auto dest: unique_NA)
done
text‹If the encrypted message appears then it originated with Alice in NS1›
lemma B_trusts_NS1:
"Nprg ∈ Always
{s. Nonce NA ∉ analz (spies s) -->
Crypt (pubK B) ⦃Nonce NA, Agent A⦄ ∈ parts (spies s)
--> Says A B (Crypt (pubK B) ⦃Nonce NA, Agent A⦄) ∈ set s}"
apply ns_induct
apply blast
done
subsection‹Authenticity properties obtained from NS2›
text‹Unicity for NS2: nonce NB identifies nonce NA and agent A.
Proof closely follows that of ‹unique_NA›.›
lemma unique_NB_lemma:
"Nprg
∈ Always {s. Nonce NB ∉ analz (spies s) -->
Crypt (pubK A) ⦃Nonce NA, Nonce NB⦄ ∈ parts (spies s) -->
Crypt(pubK A') ⦃Nonce NA', Nonce NB⦄ ∈ parts(spies s) -->
A=A' & NA=NA'}"
apply ns_induct
apply auto
txt‹Fake, NS2 are non-trivial›
done
lemma unique_NB:
"[| Crypt(pubK A) ⦃Nonce NA, Nonce NB⦄ ∈ parts(spies s);
Crypt(pubK A') ⦃Nonce NA', Nonce NB⦄ ∈ parts(spies s);
Nonce NB ∉ analz (spies s);
s ∈ reachable Nprg |]
==> A=A' & NA=NA'"
apply (blast dest: unique_NB_lemma [THEN Always_Collect_reachableD])
done
text‹NB remains secret PROVIDED Alice never responds with round 3›
lemma Spy_not_see_NB:
"[| A ∉ bad; B ∉ bad |]
==> Nprg ∈ Always
{s. Says B A (Crypt (pubK A) ⦃Nonce NA, Nonce NB⦄) ∈ set s &
(∀C. Says A C (Crypt (pubK C) (Nonce NB)) ∉ set s)
--> Nonce NB ∉ analz (spies s)}"
apply ns_induct
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt‹NS3: because NB determines A›
prefer 4 apply (blast dest: unique_NB)
txt‹NS2: by freshness and unicity of NB›
prefer 3 apply (blast intro: no_nonce_NS1_NS2_reachable)
txt‹NS1: by freshness›
prefer 2 apply blast
txt‹Fake›
apply spy_analz
done
text‹Authentication for B: if he receives message 3 and has used NB
in message 2, then A has sent message 3--to somebody....›
lemma B_trusts_NS3:
"[| A ∉ bad; B ∉ bad |]
==> Nprg ∈ Always
{s. Crypt (pubK B) (Nonce NB) ∈ parts (spies s) &
Says B A (Crypt (pubK A) ⦃Nonce NA, Nonce NB⦄) ∈ set s
--> (∃C. Says A C (Crypt (pubK C) (Nonce NB)) ∈ set s)}"
apply (insert Spy_not_see_NB [of A B NA NB], simp, ns_induct)
apply (simp_all (no_asm_simp) add: ex_disj_distrib)
apply auto
txt‹NS3: because NB determines A. This use of ‹unique_NB› is robust.›
apply (blast intro: unique_NB [THEN conjunct1])
done
text‹Can we strengthen the secrecy theorem? NO›
lemma "[| A ∉ bad; B ∉ bad |]
==> Nprg ∈ Always
{s. Says B A (Crypt (pubK A) ⦃Nonce NA, Nonce NB⦄) ∈ set s
--> Nonce NB ∉ analz (spies s)}"
apply ns_induct
apply auto
txt‹Fake›
apply spy_analz
txt‹NS2: by freshness and unicity of NB›
apply (blast intro: no_nonce_NS1_NS2_reachable)
txt‹NS3: unicity of NB identifies A and NA, but not B›
apply (frule_tac A'=A in Says_imp_spies [THEN parts.Inj, THEN unique_NB])
apply (erule Says_imp_spies [THEN parts.Inj], auto)
apply (rename_tac s B' C)
txt‹This is the attack!
@{subgoals[display,indent=0,margin=65]}
›
oops
end