Theory Alloc
theory Alloc
imports AllocBase "../PPROD"
begin
subsection‹State definitions. OUTPUT variables are locals›
record clientState =
giv :: "nat list"
ask :: "nat list"
rel :: "nat list"
record 'a clientState_d =
clientState +
dummy :: 'a
definition
non_dummy :: "'a clientState_d => clientState"
where "non_dummy s = (|giv = giv s, ask = ask s, rel = rel s|)"
definition
client_map :: "'a clientState_d => clientState*'a"
where "client_map = funPair non_dummy dummy"
record allocState =
allocGiv :: "nat => nat list"
allocAsk :: "nat => nat list"
allocRel :: "nat => nat list"
record 'a allocState_d =
allocState +
dummy :: 'a
record 'a systemState =
allocState +
client :: "nat => clientState"
dummy :: 'a
subsubsection ‹Resource allocation system specification›
definition
system_safety :: "'a systemState program set"
where "system_safety =
Always {s. (∑i ∈ lessThan Nclients. (tokens o giv o sub i o client)s)
≤ NbT + (∑i ∈ lessThan Nclients. (tokens o rel o sub i o client)s)}"
definition
system_progress :: "'a systemState program set"
where "system_progress = (INT i : lessThan Nclients.
INT h.
{s. h ≤ (ask o sub i o client)s} LeadsTo
{s. h pfixLe (giv o sub i o client) s})"
definition
system_spec :: "'a systemState program set"
where "system_spec = system_safety Int system_progress"
subsubsection ‹Client specification (required)›
definition
client_increasing :: "'a clientState_d program set"
where "client_increasing = UNIV guarantees Increasing ask Int Increasing rel"
definition
client_bounded :: "'a clientState_d program set"
where "client_bounded = UNIV guarantees Always {s. ∀elt ∈ set (ask s). elt ≤ NbT}"
definition
client_progress :: "'a clientState_d program set"
where "client_progress =
Increasing giv guarantees
(INT h. {s. h ≤ giv s & h pfixGe ask s}
LeadsTo {s. tokens h ≤ (tokens o rel) s})"
definition
client_preserves :: "'a clientState_d program set"
where "client_preserves = preserves giv Int preserves clientState_d.dummy"
definition
client_allowed_acts :: "'a clientState_d program set"
where "client_allowed_acts =
{F. AllowedActs F =
insert Id (⋃ (Acts ` preserves (funPair rel ask)))}"
definition
client_spec :: "'a clientState_d program set"
where "client_spec = client_increasing Int client_bounded Int client_progress
Int client_allowed_acts Int client_preserves"
subsubsection ‹Allocator specification (required)›
definition
alloc_increasing :: "'a allocState_d program set"
where "alloc_increasing =
UNIV guarantees
(INT i : lessThan Nclients. Increasing (sub i o allocGiv))"
definition
alloc_safety :: "'a allocState_d program set"
where "alloc_safety =
(INT i : lessThan Nclients. Increasing (sub i o allocRel))
guarantees
Always {s. (∑i ∈ lessThan Nclients. (tokens o sub i o allocGiv)s)
≤ NbT + (∑i ∈ lessThan Nclients. (tokens o sub i o allocRel)s)}"
definition
alloc_progress :: "'a allocState_d program set"
where "alloc_progress =
(INT i : lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))
Int
Always {s. ∀i<Nclients.
∀elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}
Int
(INT i : lessThan Nclients.
INT h. {s. h ≤ (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}
LeadsTo
{s. tokens h ≤ (tokens o sub i o allocRel)s})
guarantees
(INT i : lessThan Nclients.
INT h. {s. h ≤ (sub i o allocAsk) s}
LeadsTo
{s. h pfixLe (sub i o allocGiv) s})"
definition
alloc_preserves :: "'a allocState_d program set"
where "alloc_preserves = preserves allocRel Int preserves allocAsk Int
preserves allocState_d.dummy"
definition
alloc_allowed_acts :: "'a allocState_d program set"
where "alloc_allowed_acts =
{F. AllowedActs F =
insert Id (⋃(Acts ` (preserves allocGiv)))}"
definition
alloc_spec :: "'a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress Int
alloc_allowed_acts Int alloc_preserves"
subsubsection ‹Network specification›
definition
network_ask :: "'a systemState program set"
where "network_ask = (INT i : lessThan Nclients.
Increasing (ask o sub i o client) guarantees
((sub i o allocAsk) Fols (ask o sub i o client)))"
definition
network_giv :: "'a systemState program set"
where "network_giv = (INT i : lessThan Nclients.
Increasing (sub i o allocGiv)
guarantees
((giv o sub i o client) Fols (sub i o allocGiv)))"
definition
network_rel :: "'a systemState program set"
where "network_rel = (INT i : lessThan Nclients.
Increasing (rel o sub i o client)
guarantees
((sub i o allocRel) Fols (rel o sub i o client)))"
definition
network_preserves :: "'a systemState program set"
where "network_preserves =
preserves allocGiv Int
(INT i : lessThan Nclients. preserves (rel o sub i o client) Int
preserves (ask o sub i o client))"
definition
network_allowed_acts :: "'a systemState program set"
where "network_allowed_acts =
{F. AllowedActs F = insert Id
(⋃ (Acts ` (preserves allocRel ∩ (⋂i<Nclients.
preserves (giv ∘ sub i ∘ client)))))}"
definition
network_spec :: "'a systemState program set"
where "network_spec = network_ask Int network_giv Int
network_rel Int network_allowed_acts Int
network_preserves"
subsubsection ‹State mappings›
definition
sysOfAlloc :: "((nat => clientState) * 'a) allocState_d => 'a systemState"
where "sysOfAlloc = (%s. let (cl,xtr) = allocState_d.dummy s
in (| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
client = cl,
dummy = xtr|))"
definition
sysOfClient :: "(nat => clientState) * 'a allocState_d => 'a systemState"
where "sysOfClient = (%(cl,al). (| allocGiv = allocGiv al,
allocAsk = allocAsk al,
allocRel = allocRel al,
client = cl,
systemState.dummy = allocState_d.dummy al|))"
axiomatization Alloc :: "'a allocState_d program"
where Alloc: "Alloc ∈ alloc_spec"
axiomatization Client :: "'a clientState_d program"
where Client: "Client ∈ client_spec"
axiomatization Network :: "'a systemState program"
where Network: "Network ∈ network_spec"
definition System :: "'a systemState program"
where "System = rename sysOfAlloc Alloc ⊔ Network ⊔
(rename sysOfClient
(plam x: lessThan Nclients. rename client_map Client))"
declare subset_preserves_o [THEN [2] rev_subsetD, intro]
declare subset_preserves_o [THEN [2] rev_subsetD, simp]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]
lemmas [simp] =
rename_image_constrains
rename_image_stable
rename_image_increasing
rename_image_invariant
rename_image_Constrains
rename_image_Stable
rename_image_Increasing
rename_image_Always
rename_image_leadsTo
rename_image_LeadsTo
rename_preserves
rename_image_preserves
lift_image_preserves
bij_image_INT
bij_is_inj [THEN image_Int]
bij_image_Collect_eq
ML ‹
fun list_of_Int th =
(list_of_Int (th RS conjunct1) @ list_of_Int (th RS conjunct2))
handle THM _ => (list_of_Int (th RS IntD1) @ list_of_Int (th RS IntD2))
handle THM _ => (list_of_Int (th RS @{thm INT_D}))
handle THM _ => (list_of_Int (th RS bspec))
handle THM _ => [th];
›
lemmas lessThanBspec = lessThan_iff [THEN iffD2, THEN [2] bspec]
attribute_setup normalized = ‹
let
fun normalized th =
normalized (th RS spec
handle THM _ => th RS @{thm lessThanBspec}
handle THM _ => th RS bspec
handle THM _ => th RS (@{thm guarantees_INT_right_iff} RS iffD1))
handle THM _ => th;
in
Scan.succeed (Thm.rule_attribute [] (K normalized))
end
›
ML ‹
fun record_auto_tac ctxt =
let val ctxt' =
ctxt addSWrapper Record.split_wrapper
addsimps
[@{thm sysOfAlloc_def}, @{thm sysOfClient_def},
@{thm client_map_def}, @{thm non_dummy_def}, @{thm funPair_def},
@{thm o_apply}, @{thm Let_def}]
in auto_tac ctxt' end;
›
method_setup record_auto = ‹Scan.succeed (SIMPLE_METHOD o record_auto_tac)›
lemma inj_sysOfAlloc [iff]: "inj sysOfAlloc"
apply (unfold sysOfAlloc_def Let_def)
apply (rule inj_onI)
apply record_auto
done
text‹We need the inverse; also having it simplifies the proof of surjectivity›
lemma inv_sysOfAlloc_eq [simp]: "!!s. inv sysOfAlloc s =
(| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = (client s, dummy s) |)"
apply (rule inj_sysOfAlloc [THEN inv_f_eq])
apply record_auto
done
lemma surj_sysOfAlloc [iff]: "surj sysOfAlloc"
apply (simp add: surj_iff_all)
apply record_auto
done
lemma bij_sysOfAlloc [iff]: "bij sysOfAlloc"
apply (blast intro: bijI)
done
subsubsection‹bijectivity of \<^term>‹sysOfClient››
lemma inj_sysOfClient [iff]: "inj sysOfClient"
apply (unfold sysOfClient_def)
apply (rule inj_onI)
apply record_auto
done
lemma inv_sysOfClient_eq [simp]: "!!s. inv sysOfClient s =
(client s,
(| allocGiv = allocGiv s,
allocAsk = allocAsk s,
allocRel = allocRel s,
allocState_d.dummy = systemState.dummy s|) )"
apply (rule inj_sysOfClient [THEN inv_f_eq])
apply record_auto
done
lemma surj_sysOfClient [iff]: "surj sysOfClient"
apply (simp add: surj_iff_all)
apply record_auto
done
lemma bij_sysOfClient [iff]: "bij sysOfClient"
apply (blast intro: bijI)
done
subsubsection‹bijectivity of \<^term>‹client_map››
lemma inj_client_map [iff]: "inj client_map"
apply (unfold inj_on_def)
apply record_auto
done
lemma inv_client_map_eq [simp]: "!!s. inv client_map s =
(%(x,y).(|giv = giv x, ask = ask x, rel = rel x,
clientState_d.dummy = y|)) s"
apply (rule inj_client_map [THEN inv_f_eq])
apply record_auto
done
lemma surj_client_map [iff]: "surj client_map"
apply (simp add: surj_iff_all)
apply record_auto
done
lemma bij_client_map [iff]: "bij client_map"
apply (blast intro: bijI)
done
text‹o-simprules for \<^term>‹client_map››
lemma fst_o_client_map: "fst o client_map = non_dummy"
apply (unfold client_map_def)
apply (rule fst_o_funPair)
done
ML ‹ML_Thms.bind_thms ("fst_o_client_map'", make_o_equivs \<^context> @{thm fst_o_client_map})›
declare fst_o_client_map' [simp]
lemma snd_o_client_map: "snd o client_map = clientState_d.dummy"
apply (unfold client_map_def)
apply (rule snd_o_funPair)
done
ML ‹ML_Thms.bind_thms ("snd_o_client_map'", make_o_equivs \<^context> @{thm snd_o_client_map})›
declare snd_o_client_map' [simp]
subsection‹o-simprules for \<^term>‹sysOfAlloc› [MUST BE AUTOMATED]›
lemma client_o_sysOfAlloc: "client o sysOfAlloc = fst o allocState_d.dummy "
apply record_auto
done
ML ‹ML_Thms.bind_thms ("client_o_sysOfAlloc'", make_o_equivs \<^context> @{thm client_o_sysOfAlloc})›
declare client_o_sysOfAlloc' [simp]
lemma allocGiv_o_sysOfAlloc_eq: "allocGiv o sysOfAlloc = allocGiv"
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocGiv_o_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocGiv_o_sysOfAlloc_eq})›
declare allocGiv_o_sysOfAlloc_eq' [simp]
lemma allocAsk_o_sysOfAlloc_eq: "allocAsk o sysOfAlloc = allocAsk"
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocAsk_o_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocAsk_o_sysOfAlloc_eq})›
declare allocAsk_o_sysOfAlloc_eq' [simp]
lemma allocRel_o_sysOfAlloc_eq: "allocRel o sysOfAlloc = allocRel"
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocRel_o_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocRel_o_sysOfAlloc_eq})›
declare allocRel_o_sysOfAlloc_eq' [simp]
subsection‹o-simprules for \<^term>‹sysOfClient› [MUST BE AUTOMATED]›
lemma client_o_sysOfClient: "client o sysOfClient = fst"
apply record_auto
done
ML ‹ML_Thms.bind_thms ("client_o_sysOfClient'", make_o_equivs \<^context> @{thm client_o_sysOfClient})›
declare client_o_sysOfClient' [simp]
lemma allocGiv_o_sysOfClient_eq: "allocGiv o sysOfClient = allocGiv o snd "
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocGiv_o_sysOfClient_eq'", make_o_equivs \<^context> @{thm allocGiv_o_sysOfClient_eq})›
declare allocGiv_o_sysOfClient_eq' [simp]
lemma allocAsk_o_sysOfClient_eq: "allocAsk o sysOfClient = allocAsk o snd "
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocAsk_o_sysOfClient_eq'", make_o_equivs \<^context> @{thm allocAsk_o_sysOfClient_eq})›
declare allocAsk_o_sysOfClient_eq' [simp]
lemma allocRel_o_sysOfClient_eq: "allocRel o sysOfClient = allocRel o snd "
apply record_auto
done
ML ‹ML_Thms.bind_thms ("allocRel_o_sysOfClient_eq'", make_o_equivs \<^context> @{thm allocRel_o_sysOfClient_eq})›
declare allocRel_o_sysOfClient_eq' [simp]
lemma allocGiv_o_inv_sysOfAlloc_eq: "allocGiv o inv sysOfAlloc = allocGiv"
apply (simp add: o_def)
done
ML ‹ML_Thms.bind_thms ("allocGiv_o_inv_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocGiv_o_inv_sysOfAlloc_eq})›
declare allocGiv_o_inv_sysOfAlloc_eq' [simp]
lemma allocAsk_o_inv_sysOfAlloc_eq: "allocAsk o inv sysOfAlloc = allocAsk"
apply (simp add: o_def)
done
ML ‹ML_Thms.bind_thms ("allocAsk_o_inv_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocAsk_o_inv_sysOfAlloc_eq})›
declare allocAsk_o_inv_sysOfAlloc_eq' [simp]
lemma allocRel_o_inv_sysOfAlloc_eq: "allocRel o inv sysOfAlloc = allocRel"
apply (simp add: o_def)
done
ML ‹ML_Thms.bind_thms ("allocRel_o_inv_sysOfAlloc_eq'", make_o_equivs \<^context> @{thm allocRel_o_inv_sysOfAlloc_eq})›
declare allocRel_o_inv_sysOfAlloc_eq' [simp]
lemma rel_inv_client_map_drop_map: "(rel o inv client_map o drop_map i o inv sysOfClient) =
rel o sub i o client"
apply (simp add: o_def drop_map_def)
done
ML ‹ML_Thms.bind_thms ("rel_inv_client_map_drop_map'", make_o_equivs \<^context> @{thm rel_inv_client_map_drop_map})›
declare rel_inv_client_map_drop_map [simp]
lemma ask_inv_client_map_drop_map: "(ask o inv client_map o drop_map i o inv sysOfClient) =
ask o sub i o client"
apply (simp add: o_def drop_map_def)
done
ML ‹ML_Thms.bind_thms ("ask_inv_client_map_drop_map'", make_o_equivs \<^context> @{thm ask_inv_client_map_drop_map})›
declare ask_inv_client_map_drop_map [simp]
text‹Client : <unfolded specification>›
lemmas client_spec_simps =
client_spec_def client_increasing_def client_bounded_def
client_progress_def client_allowed_acts_def client_preserves_def
guarantees_Int_right
ML ‹
val [Client_Increasing_ask, Client_Increasing_rel,
Client_Bounded, Client_Progress, Client_AllowedActs,
Client_preserves_giv, Client_preserves_dummy] =
@{thm Client} |> simplify (\<^context> addsimps @{thms client_spec_simps})
|> list_of_Int;
ML_Thms.bind_thm ("Client_Increasing_ask", Client_Increasing_ask);
ML_Thms.bind_thm ("Client_Increasing_rel", Client_Increasing_rel);
ML_Thms.bind_thm ("Client_Bounded", Client_Bounded);
ML_Thms.bind_thm ("Client_Progress", Client_Progress);
ML_Thms.bind_thm ("Client_AllowedActs", Client_AllowedActs);
ML_Thms.bind_thm ("Client_preserves_giv", Client_preserves_giv);
ML_Thms.bind_thm ("Client_preserves_dummy", Client_preserves_dummy);
›
declare
Client_Increasing_ask [iff]
Client_Increasing_rel [iff]
Client_Bounded [iff]
Client_preserves_giv [iff]
Client_preserves_dummy [iff]
text‹Network : <unfolded specification>›
lemmas network_spec_simps =
network_spec_def network_ask_def network_giv_def
network_rel_def network_allowed_acts_def network_preserves_def
ball_conj_distrib
ML ‹
val [Network_Ask, Network_Giv, Network_Rel, Network_AllowedActs,
Network_preserves_allocGiv, Network_preserves_rel,
Network_preserves_ask] =
@{thm Network} |> simplify (\<^context> addsimps @{thms network_spec_simps})
|> list_of_Int;
ML_Thms.bind_thm ("Network_Ask", Network_Ask);
ML_Thms.bind_thm ("Network_Giv", Network_Giv);
ML_Thms.bind_thm ("Network_Rel", Network_Rel);
ML_Thms.bind_thm ("Network_AllowedActs", Network_AllowedActs);
ML_Thms.bind_thm ("Network_preserves_allocGiv", Network_preserves_allocGiv);
ML_Thms.bind_thm ("Network_preserves_rel", Network_preserves_rel);
ML_Thms.bind_thm ("Network_preserves_ask", Network_preserves_ask);
›
declare Network_preserves_allocGiv [iff]
declare
Network_preserves_rel [simp]
Network_preserves_ask [simp]
declare
Network_preserves_rel [simplified o_def, simp]
Network_preserves_ask [simplified o_def, simp]
text‹Alloc : <unfolded specification>›
lemmas alloc_spec_simps =
alloc_spec_def alloc_increasing_def alloc_safety_def
alloc_progress_def alloc_allowed_acts_def alloc_preserves_def
ML ‹
val [Alloc_Increasing_0, Alloc_Safety, Alloc_Progress, Alloc_AllowedActs,
Alloc_preserves_allocRel, Alloc_preserves_allocAsk,
Alloc_preserves_dummy] =
@{thm Alloc} |> simplify (\<^context> addsimps @{thms alloc_spec_simps})
|> list_of_Int;
ML_Thms.bind_thm ("Alloc_Increasing_0", Alloc_Increasing_0);
ML_Thms.bind_thm ("Alloc_Safety", Alloc_Safety);
ML_Thms.bind_thm ("Alloc_Progress", Alloc_Progress);
ML_Thms.bind_thm ("Alloc_AllowedActs", Alloc_AllowedActs);
ML_Thms.bind_thm ("Alloc_preserves_allocRel", Alloc_preserves_allocRel);
ML_Thms.bind_thm ("Alloc_preserves_allocAsk", Alloc_preserves_allocAsk);
ML_Thms.bind_thm ("Alloc_preserves_dummy", Alloc_preserves_dummy);
›
text‹Strip off the INT in the guarantees postcondition›
lemmas Alloc_Increasing = Alloc_Increasing_0 [normalized]
declare
Alloc_preserves_allocRel [iff]
Alloc_preserves_allocAsk [iff]
Alloc_preserves_dummy [iff]
subsection‹Components Lemmas [MUST BE AUTOMATED]›
lemma Network_component_System: "Network ⊔
((rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) ⊔
rename sysOfAlloc Alloc)
= System"
by (simp add: System_def Join_ac)
lemma Client_component_System: "(rename sysOfClient
(plam x: (lessThan Nclients). rename client_map Client)) ⊔
(Network ⊔ rename sysOfAlloc Alloc) = System"
by (simp add: System_def Join_ac)
lemma Alloc_component_System: "rename sysOfAlloc Alloc ⊔
((rename sysOfClient (plam x: (lessThan Nclients). rename client_map Client)) ⊔
Network) = System"
by (simp add: System_def Join_ac)
declare
Client_component_System [iff]
Network_component_System [iff]
Alloc_component_System [iff]
text‹* These preservation laws should be generated automatically *›
lemma Client_Allowed [simp]: "Allowed Client = preserves rel Int preserves ask"
by (auto simp add: Allowed_def Client_AllowedActs safety_prop_Acts_iff)
lemma Network_Allowed [simp]: "Allowed Network =
preserves allocRel Int
(INT i: lessThan Nclients. preserves(giv o sub i o client))"
by (auto simp add: Allowed_def Network_AllowedActs safety_prop_Acts_iff)
lemma Alloc_Allowed [simp]: "Allowed Alloc = preserves allocGiv"
by (auto simp add: Allowed_def Alloc_AllowedActs safety_prop_Acts_iff)
text‹needed in ‹rename_client_map_tac››
lemma OK_lift_rename_Client [simp]: "OK I (%i. lift i (rename client_map Client))"
apply (rule OK_lift_I)
apply auto
apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def split_def)
done
lemma fst_lift_map_eq_fst [simp]: "fst (lift_map i x) i = fst x"
apply (insert fst_o_lift_map [of i])
apply (drule fun_cong [where x=x])
apply (simp add: o_def)
done
lemma fst_o_lift_map' [simp]:
"(f ∘ sub i ∘ fst ∘ lift_map i ∘ g) = f o fst o g"
apply (subst fst_o_lift_map [symmetric])
apply (simp only: o_assoc)
done
ML
‹
fun rename_client_map_tac ctxt =
EVERY [
simp_tac (ctxt addsimps [@{thm rename_guarantees_eq_rename_inv}]) 1,
resolve_tac ctxt @{thms guarantees_PLam_I} 1,
assume_tac ctxt 2,
asm_simp_tac (ctxt addsimps [@{thm lift_preserves_sub}]) 2,
asm_simp_tac
(ctxt addsimps [@{thm lift_guarantees_eq_lift_inv},
@{thm rename_guarantees_eq_rename_inv},
@{thm bij_imp_bij_inv}, @{thm surj_rename},
@{thm inv_inv_eq}]) 1,
asm_simp_tac
(ctxt addsimps [@{thm o_def}, @{thm non_dummy_def}, @{thm guarantees_Int_right}]) 1]
›
method_setup rename_client_map = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD (rename_client_map_tac ctxt))
›
text‹Lifting ‹Client_Increasing› to \<^term>‹systemState››
lemma rename_Client_Increasing: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client) ∈
UNIV guarantees
Increasing (ask o sub i o client) Int
Increasing (rel o sub i o client)"
by rename_client_map
lemma preserves_sub_fst_lift_map: "[| F ∈ preserves w; i ≠ j |]
==> F ∈ preserves (sub i o fst o lift_map j o funPair v w)"
apply (auto simp add: lift_map_def split_def linorder_neq_iff o_def)
apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def)
done
lemma client_preserves_giv_oo_client_map: "[| i < Nclients; j < Nclients |]
==> Client ∈ preserves (giv o sub i o fst o lift_map j o client_map)"
apply (cases "i=j")
apply (simp, simp add: o_def non_dummy_def)
apply (drule Client_preserves_dummy [THEN preserves_sub_fst_lift_map])
apply (drule_tac [!] subset_preserves_o [THEN [2] rev_subsetD])
apply (simp add: o_def client_map_def)
done
lemma rename_sysOfClient_ok_Network:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)
ok Network"
by (auto simp add: ok_iff_Allowed client_preserves_giv_oo_client_map)
lemma rename_sysOfClient_ok_Alloc:
"rename sysOfClient (plam x: lessThan Nclients. rename client_map Client)
ok rename sysOfAlloc Alloc"
by (simp add: ok_iff_Allowed)
lemma rename_sysOfAlloc_ok_Network: "rename sysOfAlloc Alloc ok Network"
by (simp add: ok_iff_Allowed)
declare
rename_sysOfClient_ok_Network [iff]
rename_sysOfClient_ok_Alloc [iff]
rename_sysOfAlloc_ok_Network [iff]
text‹The "ok" laws, re-oriented.
But not sure this works: theorem ‹ok_commute› is needed below›
declare
rename_sysOfClient_ok_Network [THEN ok_sym, iff]
rename_sysOfClient_ok_Alloc [THEN ok_sym, iff]
rename_sysOfAlloc_ok_Network [THEN ok_sym]
lemma System_Increasing: "i < Nclients
==> System ∈ Increasing (ask o sub i o client) Int
Increasing (rel o sub i o client)"
apply (rule component_guaranteesD [OF rename_Client_Increasing Client_component_System])
apply auto
done
lemmas rename_guarantees_sysOfAlloc_I =
bij_sysOfAlloc [THEN rename_rename_guarantees_eq, THEN iffD2]
lemmas rename_Alloc_Increasing =
Alloc_Increasing
[THEN rename_guarantees_sysOfAlloc_I,
simplified surj_rename o_def sub_apply
rename_image_Increasing bij_sysOfAlloc
allocGiv_o_inv_sysOfAlloc_eq']
lemma System_Increasing_allocGiv:
"i < Nclients ⟹ System ∈ Increasing (sub i o allocGiv)"
apply (unfold System_def)
apply (simp add: o_def)
apply (rule rename_Alloc_Increasing [THEN guarantees_Join_I1, THEN guaranteesD])
apply auto
done
ML ‹
ML_Thms.bind_thms ("System_Increasing'", list_of_Int @{thm System_Increasing})
›
declare System_Increasing' [intro!]
text‹Follows consequences.
The "Always (INT ...) formulation expresses the general safety property
and allows it to be combined using ‹Always_Int_rule› below.›
lemma System_Follows_rel:
"i < Nclients ==> System ∈ ((sub i o allocRel) Fols (rel o sub i o client))"
apply (auto intro!: Network_Rel [THEN component_guaranteesD])
apply (simp add: ok_commute [of Network])
done
lemma System_Follows_ask:
"i < Nclients ==> System ∈ ((sub i o allocAsk) Fols (ask o sub i o client))"
apply (auto intro!: Network_Ask [THEN component_guaranteesD])
apply (simp add: ok_commute [of Network])
done
lemma System_Follows_allocGiv:
"i < Nclients ==> System ∈ (giv o sub i o client) Fols (sub i o allocGiv)"
apply (auto intro!: Network_Giv [THEN component_guaranteesD]
rename_Alloc_Increasing [THEN component_guaranteesD])
apply (simp_all add: o_def non_dummy_def ok_commute [of Network])
apply (auto intro!: rename_Alloc_Increasing [THEN component_guaranteesD])
done
lemma Always_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.
{s. (giv o sub i o client) s ≤ (sub i o allocGiv) s})"
apply auto
apply (erule System_Follows_allocGiv [THEN Follows_Bounded])
done
lemma Always_allocAsk_le_ask: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocAsk) s ≤ (ask o sub i o client) s})"
apply auto
apply (erule System_Follows_ask [THEN Follows_Bounded])
done
lemma Always_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (sub i o allocRel) s ≤ (rel o sub i o client) s})"
by (auto intro!: Follows_Bounded System_Follows_rel)
subsection‹Proof of the safety property (1)›
text‹safety (1), step 1 is ‹System_Follows_rel››
text‹safety (1), step 2›
lemmas System_Increasing_allocRel = System_Follows_rel [THEN Follows_Increasing1]
text‹safety (1), step 3›
lemma System_sum_bounded:
"System ∈ Always {s. (∑i ∈ lessThan Nclients. (tokens o sub i o allocGiv) s)
≤ NbT + (∑i ∈ lessThan Nclients. (tokens o sub i o allocRel) s)}"
apply (simp add: o_apply)
apply (insert Alloc_Safety [THEN rename_guarantees_sysOfAlloc_I])
apply (simp add: o_def)
apply (erule component_guaranteesD)
apply (auto simp add: System_Increasing_allocRel [simplified sub_apply o_def])
done
text‹Follows reasoning›
lemma Always_tokens_giv_le_allocGiv: "System ∈ Always (INT i: lessThan Nclients.
{s. (tokens o giv o sub i o client) s
≤ (tokens o sub i o allocGiv) s})"
apply (rule Always_giv_le_allocGiv [THEN Always_weaken])
apply (auto intro: tokens_mono_prefix simp add: o_apply)
done
lemma Always_tokens_allocRel_le_rel: "System ∈ Always (INT i: lessThan Nclients.
{s. (tokens o sub i o allocRel) s
≤ (tokens o rel o sub i o client) s})"
apply (rule Always_allocRel_le_rel [THEN Always_weaken])
apply (auto intro: tokens_mono_prefix simp add: o_apply)
done
text‹safety (1), step 4 (final result!)›
theorem System_safety: "System ∈ system_safety"
apply (unfold system_safety_def)
apply (tactic ‹resolve_tac \<^context> [Always_Int_rule [@{thm System_sum_bounded},
@{thm Always_tokens_giv_le_allocGiv}, @{thm Always_tokens_allocRel_le_rel}] RS
@{thm Always_weaken}] 1›)
apply auto
apply (rule sum_fun_mono [THEN order_trans])
apply (drule_tac [2] order_trans)
apply (rule_tac [2] add_le_mono [OF order_refl sum_fun_mono])
prefer 3 apply assumption
apply auto
done
subsection ‹Proof of the progress property (2)›
text‹progress (2), step 1 is ‹System_Follows_ask› and
‹System_Follows_rel››
text‹progress (2), step 2; see also ‹System_Increasing_allocRel››
lemmas System_Increasing_allocAsk = System_Follows_ask [THEN Follows_Increasing1]
text‹progress (2), step 3: lifting ‹Client_Bounded› to systemState›
lemma rename_Client_Bounded: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client) ∈
UNIV guarantees
Always {s. ∀elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"
using image_cong_simp [cong del] by rename_client_map
lemma System_Bounded_ask: "i < Nclients
==> System ∈ Always
{s. ∀elt ∈ set ((ask o sub i o client) s). elt ≤ NbT}"
apply (rule component_guaranteesD [OF rename_Client_Bounded Client_component_System])
apply auto
done
lemma Collect_all_imp_eq: "{x. ∀y. P y ⟶ Q x y} = (INT y: {y. P y}. {x. Q x y})"
apply blast
done
text‹progress (2), step 4›
lemma System_Bounded_allocAsk: "System ∈ Always {s. ∀i<Nclients.
∀elt ∈ set ((sub i o allocAsk) s). elt ≤ NbT}"
apply (auto simp add: Collect_all_imp_eq)
apply (tactic ‹resolve_tac \<^context> [Always_Int_rule [@{thm Always_allocAsk_le_ask},
@{thm System_Bounded_ask}] RS @{thm Always_weaken}] 1›)
apply (auto dest: set_mono)
done
text‹progress (2), step 5 is ‹System_Increasing_allocGiv››
text‹progress (2), step 6›
lemmas System_Increasing_giv = System_Follows_allocGiv [THEN Follows_Increasing1]
lemma rename_Client_Progress: "i ∈ I
==> rename sysOfClient (plam x: I. rename client_map Client)
∈ Increasing (giv o sub i o client)
guarantees
(INT h. {s. h ≤ (giv o sub i o client) s &
h pfixGe (ask o sub i o client) s}
LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"
supply image_cong_simp [cong del]
apply rename_client_map
apply (simp add: Client_Progress [simplified o_def])
done
text‹progress (2), step 7›
lemma System_Client_Progress:
"System ∈ (INT i : (lessThan Nclients).
INT h. {s. h ≤ (giv o sub i o client) s &
h pfixGe (ask o sub i o client) s}
LeadsTo {s. tokens h ≤ (tokens o rel o sub i o client) s})"
apply (rule INT_I)
apply (rule component_guaranteesD [OF rename_Client_Progress Client_component_System])
apply (auto simp add: System_Increasing_giv)
done
lemmas System_lemma1 =
Always_LeadsToD [OF System_Follows_ask [THEN Follows_Bounded]
System_Follows_allocGiv [THEN Follows_LeadsTo]]
lemmas System_lemma2 =
PSP_Stable [OF System_lemma1
System_Follows_ask [THEN Follows_Increasing1, THEN IncreasingD]]
lemma System_lemma3: "i < Nclients
==> System ∈ {s. h ≤ (sub i o allocGiv) s &
h pfixGe (sub i o allocAsk) s}
LeadsTo
{s. h ≤ (giv o sub i o client) s &
h pfixGe (ask o sub i o client) s}"
apply (rule single_LeadsTo_I)
apply (rule_tac k1 = h and x1 = "(sub i o allocAsk) s"
in System_lemma2 [THEN LeadsTo_weaken])
apply auto
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] prefix_imp_pfixGe)
done
text‹progress (2), step 8: Client i's "release" action is visible system-wide›
lemma System_Alloc_Client_Progress: "i < Nclients
==> System ∈ {s. h ≤ (sub i o allocGiv) s &
h pfixGe (sub i o allocAsk) s}
LeadsTo {s. tokens h ≤ (tokens o sub i o allocRel) s}"
apply (rule LeadsTo_Trans)
prefer 2
apply (drule System_Follows_rel [THEN
mono_tokens [THEN mono_Follows_o, THEN [2] rev_subsetD],
THEN Follows_LeadsTo])
apply (simp add: o_assoc)
apply (rule LeadsTo_Trans)
apply (cut_tac [2] System_Client_Progress)
prefer 2
apply (blast intro: LeadsTo_Basis)
apply (erule System_lemma3)
done
text‹Lifting ‹Alloc_Progress› up to the level of systemState›
text‹progress (2), step 9›
lemma System_Alloc_Progress:
"System ∈ (INT i : (lessThan Nclients).
INT h. {s. h ≤ (sub i o allocAsk) s}
LeadsTo {s. h pfixLe (sub i o allocGiv) s})"
apply (simp only: o_apply sub_def)
apply (insert Alloc_Progress [THEN rename_guarantees_sysOfAlloc_I])
apply (simp add: o_def del: INT_iff)
apply (drule component_guaranteesD)
apply (auto simp add:
System_Increasing_allocRel [simplified sub_apply o_def]
System_Increasing_allocAsk [simplified sub_apply o_def]
System_Bounded_allocAsk [simplified sub_apply o_def]
System_Alloc_Client_Progress [simplified sub_apply o_def])
done
text‹progress (2), step 10 (final result!)›
lemma System_Progress: "System ∈ system_progress"
apply (unfold system_progress_def)
apply (cut_tac System_Alloc_Progress)
apply auto
apply (blast intro: LeadsTo_Trans
System_Follows_allocGiv [THEN Follows_LeadsTo_pfixLe]
System_Follows_ask [THEN Follows_LeadsTo])
done
theorem System_correct: "System ∈ system_spec"
apply (unfold system_spec_def)
apply (blast intro: System_safety System_Progress)
done
text‹Some obsolete lemmas›
lemma non_dummy_eq_o_funPair: "non_dummy = (% (g,a,r). (| giv = g, ask = a, rel = r |)) o
(funPair giv (funPair ask rel))"
apply (rule ext)
apply (auto simp add: o_def non_dummy_def)
done
lemma preserves_non_dummy_eq: "(preserves non_dummy) =
(preserves rel Int preserves ask Int preserves giv)"
apply (simp add: non_dummy_eq_o_funPair)
apply auto
apply (drule_tac w1 = rel in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [2] w1 = ask in subset_preserves_o [THEN [2] rev_subsetD])
apply (drule_tac [3] w1 = giv in subset_preserves_o [THEN [2] rev_subsetD])
apply (auto simp add: o_def)
done
text‹Could go to Extend.ML›
lemma bij_fst_inv_inv_eq: "bij f ⟹ fst (inv (%(x, u). inv f x) z) = f z"
apply (rule fst_inv_equalityI)
apply (rule_tac f = "%z. (f z, h z)" for h in surjI)
apply (simp add: bij_is_inj inv_f_f)
apply (simp add: bij_is_surj surj_f_inv_f)
done
end