Theory AllocBase
section‹Common Declarations for Chandy and Charpentier's Allocator›
theory AllocBase imports "../UNITY_Main" "HOL-Library.Multiset_Order" begin
consts Nclients :: nat
axiomatization NbT :: nat
where NbT_pos: "0 < NbT"
abbreviation (input) tokens :: "nat list ⇒ nat"
where
"tokens ≡ sum_list"
abbreviation (input)
"bag_of ≡ mset"
lemma sum_fun_mono:
fixes f :: "nat ⇒ nat"
shows "(⋀i. i < n ⟹ f i ≤ g i) ⟹ sum f {..<n} ≤ sum g {..<n}"
by (induct n) (auto simp add: lessThan_Suc add_le_mono)
lemma tokens_mono_prefix: "xs ≤ ys ⟹ tokens xs ≤ tokens ys"
by (induct ys arbitrary: xs) (auto simp add: prefix_Cons)
lemma mono_tokens: "mono tokens"
using tokens_mono_prefix by (rule monoI)
lemma bag_of_append [simp]: "bag_of (l@l') = bag_of l + bag_of l'"
by (fact mset_append)
lemma mono_bag_of: "mono (bag_of :: 'a list => ('a::order) multiset)"
apply (rule monoI)
apply (unfold prefix_def)
apply (erule genPrefix.induct, simp_all add: add_right_mono)
apply (erule order_trans)
apply simp
done
declare sum.cong [cong]
lemma bag_of_nths_lemma:
"(∑i∈ A Int lessThan k. {#if i<k then f i else g i#}) =
(∑i∈ A Int lessThan k. {#f i#})"
by (rule sum.cong, auto)
lemma bag_of_nths:
"bag_of (nths l A) =
(∑i∈ A Int lessThan (length l). {# l!i #})"
by (rule_tac xs = l in rev_induct)
(simp_all add: nths_append Int_insert_right lessThan_Suc nth_append
bag_of_nths_lemma ac_simps)
lemma bag_of_nths_Un_Int:
"bag_of (nths l (A Un B)) + bag_of (nths l (A Int B)) =
bag_of (nths l A) + bag_of (nths l B)"
apply (subgoal_tac "A Int B Int {..<length l} =
(A Int {..<length l}) Int (B Int {..<length l}) ")
apply (simp add: bag_of_nths Int_Un_distrib2 sum.union_inter, blast)
done
lemma bag_of_nths_Un_disjoint:
"A Int B = {}
==> bag_of (nths l (A Un B)) =
bag_of (nths l A) + bag_of (nths l B)"
by (simp add: bag_of_nths_Un_Int [symmetric])
lemma bag_of_nths_UN_disjoint [rule_format]:
"[| finite I; ∀i∈I. ∀j∈I. i≠j ⟶ A i Int A j = {} |]
==> bag_of (nths l (⋃(A ` I))) =
(∑i∈I. bag_of (nths l (A i)))"
apply (auto simp add: bag_of_nths)
unfolding UN_simps [symmetric]
apply (subst sum.UNION_disjoint)
apply auto
done
end