Theory HOL.Enum
section ‹Finite types as explicit enumerations›
theory Enum
imports Map Groups_List
begin
subsection ‹Class ‹enum››
class enum =
fixes enum :: "'a list"
fixes enum_all :: "('a ⇒ bool) ⇒ bool"
fixes enum_ex :: "('a ⇒ bool) ⇒ bool"
assumes UNIV_enum: "UNIV = set enum"
and enum_distinct: "distinct enum"
assumes enum_all_UNIV: "enum_all P ⟷ Ball UNIV P"
assumes enum_ex_UNIV: "enum_ex P ⟷ Bex UNIV P"
begin
subclass finite proof
qed (simp add: UNIV_enum)
lemma enum_UNIV:
"set enum = UNIV"
by (simp only: UNIV_enum)
lemma in_enum: "x ∈ set enum"
by (simp add: enum_UNIV)
lemma enum_eq_I:
assumes "⋀x. x ∈ set xs"
shows "set enum = set xs"
proof -
from assms UNIV_eq_I have "UNIV = set xs" by auto
with enum_UNIV show ?thesis by simp
qed
lemma card_UNIV_length_enum:
"card (UNIV :: 'a set) = length enum"
by (simp add: UNIV_enum distinct_card enum_distinct)
lemma enum_all [simp]:
"enum_all = HOL.All"
by (simp add: fun_eq_iff enum_all_UNIV)
lemma enum_ex [simp]:
"enum_ex = HOL.Ex"
by (simp add: fun_eq_iff enum_ex_UNIV)
end
subsection ‹Implementations using \<^class>‹enum››
subsubsection ‹Unbounded operations and quantifiers›
lemma Collect_code [code]:
"Collect P = set (filter P enum)"
by (simp add: enum_UNIV)
lemma vimage_code [code]:
"f -` B = set (filter (λx. f x ∈ B) enum_class.enum)"
unfolding vimage_def Collect_code ..
definition card_UNIV :: "'a itself ⇒ nat"
where
[code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)"
lemma [code]:
"card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))"
by (simp only: card_UNIV_def enum_UNIV)
lemma all_code [code]: "(∀x. P x) ⟷ enum_all P"
by simp
lemma exists_code [code]: "(∃x. P x) ⟷ enum_ex P"
by simp
lemma exists1_code [code]: "(∃!x. P x) ⟷ list_ex1 P enum"
by (auto simp add: list_ex1_iff enum_UNIV)
subsubsection ‹An executable choice operator›
definition
[code del]: "enum_the = The"
lemma [code]:
"The P = (case filter P enum of [x] ⇒ x | _ ⇒ enum_the P)"
proof -
{
fix a
assume filter_enum: "filter P enum = [a]"
have "The P = a"
proof (rule the_equality)
fix x
assume "P x"
show "x = a"
proof (rule ccontr)
assume "x ≠ a"
from filter_enum obtain us vs
where enum_eq: "enum = us @ [a] @ vs"
and "∀ x ∈ set us. ¬ P x"
and "∀ x ∈ set vs. ¬ P x"
and "P a"
by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
with ‹P x› in_enum[of x, unfolded enum_eq] ‹x ≠ a› show "False" by auto
qed
next
from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
qed
}
from this show ?thesis
unfolding enum_the_def by (auto split: list.split)
qed
declare [[code abort: enum_the]]
code_printing
constant enum_the ⇀ (Eval) "(fn '_ => raise Match)"
subsubsection ‹Equality and order on functions›
instantiation "fun" :: (enum, equal) equal
begin
definition
"HOL.equal f g ⟷ (∀x ∈ set enum. f x = g x)"
instance proof
qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV)
end
lemma [code]:
"HOL.equal f g ⟷ enum_all (%x. f x = g x)"
by (auto simp add: equal fun_eq_iff)
lemma [code nbe]:
"HOL.equal (f :: _ ⇒ _) f ⟷ True"
by (fact equal_refl)
lemma order_fun [code]:
fixes f g :: "'a::enum ⇒ 'b::order"
shows "f ≤ g ⟷ enum_all (λx. f x ≤ g x)"
and "f < g ⟷ f ≤ g ∧ enum_ex (λx. f x ≠ g x)"
by (simp_all add: fun_eq_iff le_fun_def order_less_le)
subsubsection ‹Operations on relations›
lemma [code]:
"Id = image (λx. (x, x)) (set Enum.enum)"
by (auto intro: imageI in_enum)
lemma tranclp_unfold [code]:
"tranclp r a b ⟷ (a, b) ∈ trancl {(x, y). r x y}"
by (simp add: trancl_def)
lemma rtranclp_rtrancl_eq [code]:
"rtranclp r x y ⟷ (x, y) ∈ rtrancl {(x, y). r x y}"
by (simp add: rtrancl_def)
lemma max_ext_eq [code]:
"max_ext R = {(X, Y). finite X ∧ finite Y ∧ Y ≠ {} ∧ (∀x. x ∈ X ⟶ (∃xa ∈ Y. (x, xa) ∈ R))}"
by (auto simp add: max_ext.simps)
lemma max_extp_eq [code]:
"max_extp r x y ⟷ (x, y) ∈ max_ext {(x, y). r x y}"
by (simp add: max_ext_def)
lemma mlex_eq [code]:
"f <*mlex*> R = {(x, y). f x < f y ∨ (f x ≤ f y ∧ (x, y) ∈ R)}"
by (auto simp add: mlex_prod_def)
subsubsection ‹Bounded accessible part›
primrec bacc :: "('a × 'a) set ⇒ nat ⇒ 'a set"
where
"bacc r 0 = {x. ∀ y. (y, x) ∉ r}"
| "bacc r (Suc n) = (bacc r n ∪ {x. ∀y. (y, x) ∈ r ⟶ y ∈ bacc r n})"
lemma bacc_subseteq_acc:
"bacc r n ⊆ Wellfounded.acc r"
by (induct n) (auto intro: acc.intros)
lemma bacc_mono:
"n ≤ m ⟹ bacc r n ⊆ bacc r m"
by (induct rule: dec_induct) auto
lemma bacc_upper_bound:
"bacc (r :: ('a × 'a) set) (card (UNIV :: 'a::finite set)) = (⋃n. bacc r n)"
proof -
have "mono (bacc r)" unfolding mono_def by (simp add: bacc_mono)
moreover have "∀n. bacc r n = bacc r (Suc n) ⟶ bacc r (Suc n) = bacc r (Suc (Suc n))" by auto
moreover have "finite (range (bacc r))" by auto
ultimately show ?thesis
by (intro finite_mono_strict_prefix_implies_finite_fixpoint)
(auto intro: finite_mono_remains_stable_implies_strict_prefix)
qed
lemma acc_subseteq_bacc:
assumes "finite r"
shows "Wellfounded.acc r ⊆ (⋃n. bacc r n)"
proof
fix x
assume "x ∈ Wellfounded.acc r"
then have "∃n. x ∈ bacc r n"
proof (induct x arbitrary: rule: acc.induct)
case (accI x)
then have "∀y. ∃ n. (y, x) ∈ r ⟶ y ∈ bacc r n" by simp
from choice[OF this] obtain n where n: "∀y. (y, x) ∈ r ⟶ y ∈ bacc r (n y)" ..
obtain n where "⋀y. (y, x) ∈ r ⟹ y ∈ bacc r n"
proof
fix y assume y: "(y, x) ∈ r"
with n have "y ∈ bacc r (n y)" by auto
moreover have "n y <= Max ((λ(y, x). n y) ` r)"
using y ‹finite r› by (auto intro!: Max_ge)
note bacc_mono[OF this, of r]
ultimately show "y ∈ bacc r (Max ((λ(y, x). n y) ` r))" by auto
qed
then show ?case
by (auto simp add: Let_def intro!: exI[of _ "Suc n"])
qed
then show "x ∈ (⋃n. bacc r n)" by auto
qed
lemma acc_bacc_eq:
fixes A :: "('a :: finite × 'a) set"
assumes "finite A"
shows "Wellfounded.acc A = bacc A (card (UNIV :: 'a set))"
using assms by (metis acc_subseteq_bacc bacc_subseteq_acc bacc_upper_bound order_eq_iff)
lemma [code]:
fixes xs :: "('a::finite × 'a) list"
shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))"
by (simp add: card_UNIV_def acc_bacc_eq)
subsection ‹Default instances for \<^class>‹enum››
lemma map_of_zip_enum_is_Some:
assumes "length ys = length (enum :: 'a::enum list)"
shows "∃y. map_of (zip (enum :: 'a::enum list) ys) x = Some y"
proof -
from assms have "x ∈ set (enum :: 'a::enum list) ⟷
(∃y. map_of (zip (enum :: 'a::enum list) ys) x = Some y)"
by (auto intro!: map_of_zip_is_Some)
then show ?thesis using enum_UNIV by auto
qed
lemma map_of_zip_enum_inject:
fixes xs ys :: "'b::enum list"
assumes length: "length xs = length (enum :: 'a::enum list)"
"length ys = length (enum :: 'a::enum list)"
and map_of: "the ∘ map_of (zip (enum :: 'a::enum list) xs) = the ∘ map_of (zip (enum :: 'a::enum list) ys)"
shows "xs = ys"
proof -
have "map_of (zip (enum :: 'a list) xs) = map_of (zip (enum :: 'a list) ys)"
proof
fix x :: 'a
from length map_of_zip_enum_is_Some obtain y1 y2
where "map_of (zip (enum :: 'a list) xs) x = Some y1"
and "map_of (zip (enum :: 'a list) ys) x = Some y2" by blast
moreover from map_of
have "the (map_of (zip (enum :: 'a::enum list) xs) x) = the (map_of (zip (enum :: 'a::enum list) ys) x)"
by (auto dest: fun_cong)
ultimately show "map_of (zip (enum :: 'a::enum list) xs) x = map_of (zip (enum :: 'a::enum list) ys) x"
by simp
qed
with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
qed
definition all_n_lists :: "(('a :: enum) list ⇒ bool) ⇒ nat ⇒ bool"
where
"all_n_lists P n ⟷ (∀xs ∈ set (List.n_lists n enum). P xs)"
lemma [code]:
"all_n_lists P n ⟷ (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"
unfolding all_n_lists_def enum_all
by (cases n) (auto simp add: enum_UNIV)
definition ex_n_lists :: "(('a :: enum) list ⇒ bool) ⇒ nat ⇒ bool"
where
"ex_n_lists P n ⟷ (∃xs ∈ set (List.n_lists n enum). P xs)"
lemma [code]:
"ex_n_lists P n ⟷ (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"
unfolding ex_n_lists_def enum_ex
by (cases n) (auto simp add: enum_UNIV)
instantiation "fun" :: (enum, enum) enum
begin
definition
"enum = map (λys. the ∘ map_of (zip (enum::'a list) ys)) (List.n_lists (length (enum::'a::enum list)) enum)"
definition
"enum_all P = all_n_lists (λbs. P (the ∘ map_of (zip enum bs))) (length (enum :: 'a list))"
definition
"enum_ex P = ex_n_lists (λbs. P (the ∘ map_of (zip enum bs))) (length (enum :: 'a list))"
instance proof
show "UNIV = set (enum :: ('a ⇒ 'b) list)"
proof (rule UNIV_eq_I)
fix f :: "'a ⇒ 'b"
have "f = the ∘ map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
then show "f ∈ set enum"
by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
qed
next
from map_of_zip_enum_inject
show "distinct (enum :: ('a ⇒ 'b) list)"
by (auto intro!: inj_onI simp add: enum_fun_def
distinct_map distinct_n_lists enum_distinct set_n_lists)
next
fix P
show "enum_all (P :: ('a ⇒ 'b) ⇒ bool) = Ball UNIV P"
proof
assume "enum_all P"
show "Ball UNIV P"
proof
fix f :: "'a ⇒ 'b"
have f: "f = the ∘ map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from ‹enum_all P› have "P (the ∘ map_of (zip enum (map f enum)))"
unfolding enum_all_fun_def all_n_lists_def
apply (simp add: set_n_lists)
apply (erule_tac x="map f enum" in allE)
apply (auto intro!: in_enum)
done
from this f show "P f" by auto
qed
next
assume "Ball UNIV P"
from this show "enum_all P"
unfolding enum_all_fun_def all_n_lists_def by auto
qed
next
fix P
show "enum_ex (P :: ('a ⇒ 'b) ⇒ bool) = Bex UNIV P"
proof
assume "enum_ex P"
from this show "Bex UNIV P"
unfolding enum_ex_fun_def ex_n_lists_def by auto
next
assume "Bex UNIV P"
from this obtain f where "P f" ..
have f: "f = the ∘ map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from ‹P f› this have "P (the ∘ map_of (zip (enum :: 'a::enum list) (map f enum)))"
by auto
from this show "enum_ex P"
unfolding enum_ex_fun_def ex_n_lists_def
apply (auto simp add: set_n_lists)
apply (rule_tac x="map f enum" in exI)
apply (auto intro!: in_enum)
done
qed
qed
end
lemma enum_fun_code [code]: "enum = (let enum_a = (enum :: 'a::{enum, equal} list)
in map (λys. the ∘ map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))"
by (simp add: enum_fun_def Let_def)
lemma enum_all_fun_code [code]:
"enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
in all_n_lists (λbs. P (the ∘ map_of (zip enum_a bs))) (length enum_a))"
by (simp only: enum_all_fun_def Let_def)
lemma enum_ex_fun_code [code]:
"enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
in ex_n_lists (λbs. P (the ∘ map_of (zip enum_a bs))) (length enum_a))"
by (simp only: enum_ex_fun_def Let_def)
instantiation set :: (enum) enum
begin
definition
"enum = map set (subseqs enum)"
definition
"enum_all P ⟷ (∀A∈set enum. P (A::'a set))"
definition
"enum_ex P ⟷ (∃A∈set enum. P (A::'a set))"
instance proof
qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def subseqs_powset distinct_set_subseqs
enum_distinct enum_UNIV)
end
instantiation unit :: enum
begin
definition
"enum = [()]"
definition
"enum_all P = P ()"
definition
"enum_ex P = P ()"
instance proof
qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def)
end
instantiation bool :: enum
begin
definition
"enum = [False, True]"
definition
"enum_all P ⟷ P False ∧ P True"
definition
"enum_ex P ⟷ P False ∨ P True"
instance proof
qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all)
end
instantiation prod :: (enum, enum) enum
begin
definition
"enum = List.product enum enum"
definition
"enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"
definition
"enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"
instance
by standard
(simp_all add: enum_prod_def distinct_product
enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def)
end
instantiation sum :: (enum, enum) enum
begin
definition
"enum = map Inl enum @ map Inr enum"
definition
"enum_all P ⟷ enum_all (λx. P (Inl x)) ∧ enum_all (λx. P (Inr x))"
definition
"enum_ex P ⟷ enum_ex (λx. P (Inl x)) ∨ enum_ex (λx. P (Inr x))"
instance proof
qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum,
auto simp add: enum_UNIV distinct_map enum_distinct)
end
instantiation option :: (enum) enum
begin
definition
"enum = None # map Some enum"
definition
"enum_all P ⟷ P None ∧ enum_all (λx. P (Some x))"
definition
"enum_ex P ⟷ P None ∨ enum_ex (λx. P (Some x))"
instance proof
qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv,
auto simp add: distinct_map enum_UNIV enum_distinct)
end
subsection ‹Small finite types›
text ‹We define small finite types for use in Quickcheck›
datatype (plugins only: code "quickcheck" extraction) finite_1 =
a⇩1
notation (output) a⇩1 ("a⇩1")
lemma UNIV_finite_1:
"UNIV = {a⇩1}"
by (auto intro: finite_1.exhaust)
instantiation finite_1 :: enum
begin
definition
"enum = [a⇩1]"
definition
"enum_all P = P a⇩1"
definition
"enum_ex P = P a⇩1"
instance proof
qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all)
end
instantiation finite_1 :: linorder
begin
definition less_finite_1 :: "finite_1 ⇒ finite_1 ⇒ bool"
where
"x < (y :: finite_1) ⟷ False"
definition less_eq_finite_1 :: "finite_1 ⇒ finite_1 ⇒ bool"
where
"x ≤ (y :: finite_1) ⟷ True"
instance
apply (intro_classes)
apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
apply (metis (full_types) finite_1.exhaust)
done
end
instance finite_1 :: "{dense_linorder, wellorder}"
by intro_classes (simp_all add: less_finite_1_def)
instantiation finite_1 :: complete_lattice
begin
definition [simp]: "Inf = (λ_. a⇩1)"
definition [simp]: "Sup = (λ_. a⇩1)"
definition [simp]: "bot = a⇩1"
definition [simp]: "top = a⇩1"
definition [simp]: "inf = (λ_ _. a⇩1)"
definition [simp]: "sup = (λ_ _. a⇩1)"
instance by intro_classes(simp_all add: less_eq_finite_1_def)
end
instance finite_1 :: complete_distrib_lattice
by standard simp_all
instance finite_1 :: complete_linorder ..
lemma finite_1_eq: "x = a⇩1"
by(cases x) simp
simproc_setup finite_1_eq ("x::finite_1") = ‹
K (K (fn ct =>
(case Thm.term_of ct of
Const (\<^const_name>‹a⇩1›, _) => NONE
| _ => SOME (mk_meta_eq @{thm finite_1_eq}))))
›
instantiation finite_1 :: complete_boolean_algebra
begin
definition [simp]: "(-) = (λ_ _. a⇩1)"
definition [simp]: "uminus = (λ_. a⇩1)"
instance by intro_classes simp_all
end
instantiation finite_1 ::
"{linordered_ring_strict, linordered_comm_semiring_strict, ordered_comm_ring,
ordered_cancel_comm_monoid_diff, comm_monoid_mult, ordered_ring_abs,
one, modulo, sgn, inverse}"
begin
definition [simp]: "Groups.zero = a⇩1"
definition [simp]: "Groups.one = a⇩1"
definition [simp]: "(+) = (λ_ _. a⇩1)"
definition [simp]: "(*) = (λ_ _. a⇩1)"
definition [simp]: "(mod) = (λ_ _. a⇩1)"
definition [simp]: "abs = (λ_. a⇩1)"
definition [simp]: "sgn = (λ_. a⇩1)"
definition [simp]: "inverse = (λ_. a⇩1)"
definition [simp]: "divide = (λ_ _. a⇩1)"
instance by intro_classes(simp_all add: less_finite_1_def)
end
declare [[simproc del: finite_1_eq]]
hide_const (open) a⇩1
datatype (plugins only: code "quickcheck" extraction) finite_2 =
a⇩1 | a⇩2
notation (output) a⇩1 ("a⇩1")
notation (output) a⇩2 ("a⇩2")
lemma UNIV_finite_2:
"UNIV = {a⇩1, a⇩2}"
by (auto intro: finite_2.exhaust)
instantiation finite_2 :: enum
begin
definition
"enum = [a⇩1, a⇩2]"
definition
"enum_all P ⟷ P a⇩1 ∧ P a⇩2"
definition
"enum_ex P ⟷ P a⇩1 ∨ P a⇩2"
instance proof
qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all)
end
instantiation finite_2 :: linorder
begin
definition less_finite_2 :: "finite_2 ⇒ finite_2 ⇒ bool"
where
"x < y ⟷ x = a⇩1 ∧ y = a⇩2"
definition less_eq_finite_2 :: "finite_2 ⇒ finite_2 ⇒ bool"
where
"x ≤ y ⟷ x = y ∨ x < (y :: finite_2)"
instance
apply (intro_classes)
apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
apply (metis finite_2.nchotomy)+
done
end
instance finite_2 :: wellorder
by(rule wf_wellorderI)(simp add: less_finite_2_def, intro_classes)
instantiation finite_2 :: complete_lattice
begin
definition "⨅A = (if a⇩1 ∈ A then a⇩1 else a⇩2)"
definition "⨆A = (if a⇩2 ∈ A then a⇩2 else a⇩1)"
definition [simp]: "bot = a⇩1"
definition [simp]: "top = a⇩2"
definition "x ⊓ y = (if x = a⇩1 ∨ y = a⇩1 then a⇩1 else a⇩2)"
definition "x ⊔ y = (if x = a⇩2 ∨ y = a⇩2 then a⇩2 else a⇩1)"
lemma neq_finite_2_a⇩1_iff [simp]: "x ≠ a⇩1 ⟷ x = a⇩2"
by(cases x) simp_all
lemma neq_finite_2_a⇩1_iff' [simp]: "a⇩1 ≠ x ⟷ x = a⇩2"
by(cases x) simp_all
lemma neq_finite_2_a⇩2_iff [simp]: "x ≠ a⇩2 ⟷ x = a⇩1"
by(cases x) simp_all
lemma neq_finite_2_a⇩2_iff' [simp]: "a⇩2 ≠ x ⟷ x = a⇩1"
by(cases x) simp_all
instance
proof
fix x :: finite_2 and A
assume "x ∈ A"
then show "⨅A ≤ x" "x ≤ ⨆A"
by(cases x; auto simp add: less_eq_finite_2_def less_finite_2_def Inf_finite_2_def Sup_finite_2_def)+
qed(auto simp add: less_eq_finite_2_def less_finite_2_def inf_finite_2_def sup_finite_2_def Inf_finite_2_def Sup_finite_2_def)
end
instance finite_2 :: complete_linorder ..
instance finite_2 :: complete_distrib_lattice ..
instantiation finite_2 :: "{field, idom_abs_sgn, idom_modulo}" begin
definition [simp]: "0 = a⇩1"
definition [simp]: "1 = a⇩2"
definition "x + y = (case (x, y) of (a⇩1, a⇩1) ⇒ a⇩1 | (a⇩2, a⇩2) ⇒ a⇩1 | _ ⇒ a⇩2)"
definition "uminus = (λx :: finite_2. x)"
definition "(-) = ((+) :: finite_2 ⇒ _)"
definition "x * y = (case (x, y) of (a⇩2, a⇩2) ⇒ a⇩2 | _ ⇒ a⇩1)"
definition "inverse = (λx :: finite_2. x)"
definition "divide = ((*) :: finite_2 ⇒ _)"
definition "x mod y = (case (x, y) of (a⇩2, a⇩1) ⇒ a⇩2 | _ ⇒ a⇩1)"
definition "abs = (λx :: finite_2. x)"
definition "sgn = (λx :: finite_2. x)"
instance
by standard
(subproofs
‹simp_all add: plus_finite_2_def uminus_finite_2_def minus_finite_2_def
times_finite_2_def
inverse_finite_2_def divide_finite_2_def modulo_finite_2_def
abs_finite_2_def sgn_finite_2_def
split: finite_2.splits›)
end
lemma two_finite_2 [simp]:
"2 = a⇩1"
by (simp add: numeral.simps plus_finite_2_def)
lemma dvd_finite_2_unfold:
"x dvd y ⟷ x = a⇩2 ∨ y = a⇩1"
by (auto simp add: dvd_def times_finite_2_def split: finite_2.splits)
instantiation finite_2 :: "{normalization_semidom, unique_euclidean_semiring}" begin
definition [simp]: "normalize = (id :: finite_2 ⇒ _)"
definition [simp]: "unit_factor = (id :: finite_2 ⇒ _)"
definition [simp]: "euclidean_size x = (case x of a⇩1 ⇒ 0 | a⇩2 ⇒ 1)"
definition [simp]: "division_segment (x :: finite_2) = 1"
instance
by standard
(subproofs
‹auto simp add: divide_finite_2_def times_finite_2_def dvd_finite_2_unfold
split: finite_2.splits›)
end
hide_const (open) a⇩1 a⇩2
datatype (plugins only: code "quickcheck" extraction) finite_3 =
a⇩1 | a⇩2 | a⇩3
notation (output) a⇩1 ("a⇩1")
notation (output) a⇩2 ("a⇩2")
notation (output) a⇩3 ("a⇩3")
lemma UNIV_finite_3:
"UNIV = {a⇩1, a⇩2, a⇩3}"
by (auto intro: finite_3.exhaust)
instantiation finite_3 :: enum
begin
definition
"enum = [a⇩1, a⇩2, a⇩3]"
definition
"enum_all P ⟷ P a⇩1 ∧ P a⇩2 ∧ P a⇩3"
definition
"enum_ex P ⟷ P a⇩1 ∨ P a⇩2 ∨ P a⇩3"
instance proof
qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all)
end
lemma finite_3_not_eq_unfold:
"x ≠ a⇩1 ⟷ x ∈ {a⇩2, a⇩3}"
"x ≠ a⇩2 ⟷ x ∈ {a⇩1, a⇩3}"
"x ≠ a⇩3 ⟷ x ∈ {a⇩1, a⇩2}"
by (cases x; simp)+
instantiation finite_3 :: linorder
begin
definition less_finite_3 :: "finite_3 ⇒ finite_3 ⇒ bool"
where
"x < y = (case x of a⇩1 ⇒ y ≠ a⇩1 | a⇩2 ⇒ y = a⇩3 | a⇩3 ⇒ False)"
definition less_eq_finite_3 :: "finite_3 ⇒ finite_3 ⇒ bool"
where
"x ≤ y ⟷ x = y ∨ x < (y :: finite_3)"
instance proof (intro_classes)
qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)
end
instance finite_3 :: wellorder
proof(rule wf_wellorderI)
have "inv_image less_than (case_finite_3 0 1 2) = {(x, y). x < y}"
by(auto simp add: less_finite_3_def split: finite_3.splits)
from this[symmetric] show "wf …" by simp
qed intro_classes
class finite_lattice = finite + lattice + Inf + Sup + bot + top +
assumes Inf_finite_empty: "Inf {} = Sup UNIV"
assumes Inf_finite_insert: "Inf (insert a A) = a ⊓ Inf A"
assumes Sup_finite_empty: "Sup {} = Inf UNIV"
assumes Sup_finite_insert: "Sup (insert a A) = a ⊔ Sup A"
assumes bot_finite_def: "bot = Inf UNIV"
assumes top_finite_def: "top = Sup UNIV"
begin
subclass complete_lattice
proof
fix x A
show "x ∈ A ⟹ ⨅A ≤ x"
by (metis Set.set_insert abel_semigroup.commute local.Inf_finite_insert local.inf.abel_semigroup_axioms local.inf.left_idem local.inf.orderI)
show "x ∈ A ⟹ x ≤ ⨆A"
by (metis Set.set_insert insert_absorb2 local.Sup_finite_insert local.sup.absorb_iff2)
next
fix A z
have "⨆ UNIV = z ⊔ ⨆UNIV"
by (subst Sup_finite_insert [symmetric], simp add: insert_UNIV)
from this have [simp]: "z ≤ ⨆UNIV"
using local.le_iff_sup by auto
have "(∀ x. x ∈ A ⟶ z ≤ x) ⟶ z ≤ ⨅A"
by (rule finite_induct [of A "λ A . (∀ x. x ∈ A ⟶ z ≤ x) ⟶ z ≤ ⨅A"])
(simp_all add: Inf_finite_empty Inf_finite_insert)
from this show "(⋀x. x ∈ A ⟹ z ≤ x) ⟹ z ≤ ⨅A"
by simp
have "⨅ UNIV = z ⊓ ⨅UNIV"
by (subst Inf_finite_insert [symmetric], simp add: insert_UNIV)
from this have [simp]: "⨅UNIV ≤ z"
by (simp add: local.inf.absorb_iff2)
have "(∀ x. x ∈ A ⟶ x ≤ z) ⟶ ⨆A ≤ z"
by (rule finite_induct [of A "λ A . (∀ x. x ∈ A ⟶ x ≤ z) ⟶ ⨆A ≤ z" ], simp_all add: Sup_finite_empty Sup_finite_insert)
from this show " (⋀x. x ∈ A ⟹ x ≤ z) ⟹ ⨆A ≤ z"
by blast
next
show "⨅{} = ⊤"
by (simp add: Inf_finite_empty top_finite_def)
show " ⨆{} = ⊥"
by (simp add: Sup_finite_empty bot_finite_def)
qed
end
class finite_distrib_lattice = finite_lattice + distrib_lattice
begin
lemma finite_inf_Sup: "a ⊓ (Sup A) = Sup {a ⊓ b | b . b ∈ A}"
proof (rule finite_induct [of A "λ A . a ⊓ (Sup A) = Sup {a ⊓ b | b . b ∈ A}"], simp_all)
fix x::"'a"
fix F
assume "x ∉ F"
assume [simp]: "a ⊓ ⨆F = ⨆{a ⊓ b |b. b ∈ F}"
have [simp]: " insert (a ⊓ x) {a ⊓ b |b. b ∈ F} = {a ⊓ b |b. b = x ∨ b ∈ F}"
by blast
have "a ⊓ (x ⊔ ⨆F) = a ⊓ x ⊔ a ⊓ ⨆F"
by (simp add: inf_sup_distrib1)
also have "... = a ⊓ x ⊔ ⨆{a ⊓ b |b. b ∈ F}"
by simp
also have "... = ⨆{a ⊓ b |b. b = x ∨ b ∈ F}"
by (unfold Sup_insert[THEN sym], simp)
finally show "a ⊓ (x ⊔ ⨆F) = ⨆{a ⊓ b |b. b = x ∨ b ∈ F}"
by simp
qed
lemma finite_Inf_Sup: "⨅(Sup ` A) ≤ ⨆(Inf ` {f ` A |f. ∀Y∈A. f Y ∈ Y})"
proof (rule finite_induct [of A "λA. ⨅(Sup ` A) ≤ ⨆(Inf ` {f ` A |f. ∀Y∈A. f Y ∈ Y})"], simp_all add: finite_UnionD)
fix x::"'a set"
fix F
assume "x ∉ F"
have [simp]: "{⨆x ⊓ b |b . b ∈ Inf ` {f ` F |f. ∀Y∈F. f Y ∈ Y} } = {⨆x ⊓ (Inf (f ` F)) |f . (∀Y∈F. f Y ∈ Y)}"
by auto
define fa where "fa = (λ (b::'a) f Y . (if Y = x then b else f Y))"
have "⋀f b. ∀Y∈F. f Y ∈ Y ⟹ b ∈ x ⟹ insert b (f ` (F ∩ {Y. Y ≠ x})) = insert (fa b f x) (fa b f ` F) ∧ fa b f x ∈ x ∧ (∀Y∈F. fa b f Y ∈ Y)"
by (auto simp add: fa_def)
from this have B: "⋀f b. ∀Y∈F. f Y ∈ Y ⟹ b ∈ x ⟹ fa b f ` ({x} ∪ F) ∈ {insert (f x) (f ` F) |f. f x ∈ x ∧ (∀Y∈F. f Y ∈ Y)}"
by blast
have [simp]: "⋀f b. ∀Y∈F. f Y ∈ Y ⟹ b ∈ x ⟹ b ⊓ (⨅x∈F. f x) ≤ ⨆(Inf ` {insert (f x) (f ` F) |f. f x ∈ x ∧ (∀Y∈F. f Y ∈ Y)})"
using B apply (rule SUP_upper2)
using ‹x ∉ F› apply (simp_all add: fa_def Inf_union_distrib)
apply (simp add: image_mono Inf_superset_mono inf.coboundedI2)
done
assume "⨅(Sup ` F) ≤ ⨆(Inf ` {f ` F |f. ∀Y∈F. f Y ∈ Y})"
from this have "⨆x ⊓ ⨅(Sup ` F) ≤ ⨆x ⊓ ⨆(Inf ` {f ` F |f. ∀Y∈F. f Y ∈ Y})"
using inf.coboundedI2 by auto
also have "... = Sup {⨆x ⊓ (Inf (f ` F)) |f . (∀Y∈F. f Y ∈ Y)}"
by (simp add: finite_inf_Sup)
also have "... = Sup {Sup {Inf (f ` F) ⊓ b | b . b ∈ x} |f . (∀Y∈F. f Y ∈ Y)}"
by (subst inf_commute) (simp add: finite_inf_Sup)
also have "... ≤ ⨆(Inf ` {insert (f x) (f ` F) |f. f x ∈ x ∧ (∀Y∈F. f Y ∈ Y)})"
apply (rule Sup_least, clarsimp)+
apply (subst inf_commute, simp)
done
finally show "⨆x ⊓ ⨅(Sup ` F) ≤ ⨆(Inf ` {insert (f x) (f ` F) |f. f x ∈ x ∧ (∀Y∈F. f Y ∈ Y)})"
by simp
qed
subclass complete_distrib_lattice
by (standard, rule finite_Inf_Sup)
end
instantiation finite_3 :: finite_lattice
begin
definition "⨅A = (if a⇩1 ∈ A then a⇩1 else if a⇩2 ∈ A then a⇩2 else a⇩3)"
definition "⨆A = (if a⇩3 ∈ A then a⇩3 else if a⇩2 ∈ A then a⇩2 else a⇩1)"
definition [simp]: "bot = a⇩1"
definition [simp]: "top = a⇩3"
definition [simp]: "inf = (min :: finite_3 ⇒ _)"
definition [simp]: "sup = (max :: finite_3 ⇒ _)"
instance
proof
qed (auto simp add: Inf_finite_3_def Sup_finite_3_def max_def min_def less_eq_finite_3_def less_finite_3_def split: finite_3.split)
end
instance finite_3 :: complete_lattice ..
instance finite_3 :: finite_distrib_lattice
proof
qed (auto simp add: min_def max_def)
instance finite_3 :: complete_distrib_lattice ..
instance finite_3 :: complete_linorder ..
instantiation finite_3 :: "{field, idom_abs_sgn, idom_modulo}" begin
definition [simp]: "0 = a⇩1"
definition [simp]: "1 = a⇩2"
definition
"x + y = (case (x, y) of
(a⇩1, a⇩1) ⇒ a⇩1 | (a⇩2, a⇩3) ⇒ a⇩1 | (a⇩3, a⇩2) ⇒ a⇩1
| (a⇩1, a⇩2) ⇒ a⇩2 | (a⇩2, a⇩1) ⇒ a⇩2 | (a⇩3, a⇩3) ⇒ a⇩2
| _ ⇒ a⇩3)"
definition "- x = (case x of a⇩1 ⇒ a⇩1 | a⇩2 ⇒ a⇩3 | a⇩3 ⇒ a⇩2)"
definition "x - y = x + (- y :: finite_3)"
definition "x * y = (case (x, y) of (a⇩2, a⇩2) ⇒ a⇩2 | (a⇩3, a⇩3) ⇒ a⇩2 | (a⇩2, a⇩3) ⇒ a⇩3 | (a⇩3, a⇩2) ⇒ a⇩3 | _ ⇒ a⇩1)"
definition "inverse = (λx :: finite_3. x)"
definition "x div y = x * inverse (y :: finite_3)"
definition "x mod y = (case y of a⇩1 ⇒ x | _ ⇒ a⇩1)"
definition "abs = (λx. case x of a⇩3 ⇒ a⇩2 | _ ⇒ x)"
definition "sgn = (λx :: finite_3. x)"
instance
by standard
(subproofs
‹simp_all add: plus_finite_3_def uminus_finite_3_def minus_finite_3_def
times_finite_3_def
inverse_finite_3_def divide_finite_3_def modulo_finite_3_def
abs_finite_3_def sgn_finite_3_def
less_finite_3_def
split: finite_3.splits›)
end
lemma two_finite_3 [simp]:
"2 = a⇩3"
by (simp add: numeral.simps plus_finite_3_def)
lemma dvd_finite_3_unfold:
"x dvd y ⟷ x = a⇩2 ∨ x = a⇩3 ∨ y = a⇩1"
by (cases x) (auto simp add: dvd_def times_finite_3_def split: finite_3.splits)
instantiation finite_3 :: "{normalization_semidom, unique_euclidean_semiring}" begin
definition [simp]: "normalize x = (case x of a⇩3 ⇒ a⇩2 | _ ⇒ x)"
definition [simp]: "unit_factor = (id :: finite_3 ⇒ _)"
definition [simp]: "euclidean_size x = (case x of a⇩1 ⇒ 0 | _ ⇒ 1)"
definition [simp]: "division_segment (x :: finite_3) = 1"
instance
proof
fix x :: finite_3
assume "x ≠ 0"
then show "is_unit (unit_factor x)"
by (cases x) (simp_all add: dvd_finite_3_unfold)
qed
(subproofs
‹auto simp add: divide_finite_3_def times_finite_3_def
dvd_finite_3_unfold inverse_finite_3_def plus_finite_3_def
split: finite_3.splits›)
end
hide_const (open) a⇩1 a⇩2 a⇩3
datatype (plugins only: code "quickcheck" extraction) finite_4 =
a⇩1 | a⇩2 | a⇩3 | a⇩4
notation (output) a⇩1 ("a⇩1")
notation (output) a⇩2 ("a⇩2")
notation (output) a⇩3 ("a⇩3")
notation (output) a⇩4 ("a⇩4")
lemma UNIV_finite_4:
"UNIV = {a⇩1, a⇩2, a⇩3, a⇩4}"
by (auto intro: finite_4.exhaust)
instantiation finite_4 :: enum
begin
definition
"enum = [a⇩1, a⇩2, a⇩3, a⇩4]"
definition
"enum_all P ⟷ P a⇩1 ∧ P a⇩2 ∧ P a⇩3 ∧ P a⇩4"
definition
"enum_ex P ⟷ P a⇩1 ∨ P a⇩2 ∨ P a⇩3 ∨ P a⇩4"
instance proof
qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all)
end
instantiation finite_4 :: finite_distrib_lattice begin
text ‹\<^term>‹a⇩1› $<$ \<^term>‹a⇩2›,\<^term>‹a⇩3› $<$ \<^term>‹a⇩4›,
but \<^term>‹a⇩2› and \<^term>‹a⇩3› are incomparable.›
definition
"x < y ⟷ (case (x, y) of
(a⇩1, a⇩1) ⇒ False | (a⇩1, _) ⇒ True
| (a⇩2, a⇩4) ⇒ True
| (a⇩3, a⇩4) ⇒ True | _ ⇒ False)"
definition
"x ≤ y ⟷ (case (x, y) of
(a⇩1, _) ⇒ True
| (a⇩2, a⇩2) ⇒ True | (a⇩2, a⇩4) ⇒ True
| (a⇩3, a⇩3) ⇒ True | (a⇩3, a⇩4) ⇒ True
| (a⇩4, a⇩4) ⇒ True | _ ⇒ False)"
definition
"⨅A = (if a⇩1 ∈ A ∨ a⇩2 ∈ A ∧ a⇩3 ∈ A then a⇩1 else if a⇩2 ∈ A then a⇩2 else if a⇩3 ∈ A then a⇩3 else a⇩4)"
definition
"⨆A = (if a⇩4 ∈ A ∨ a⇩2 ∈ A ∧ a⇩3 ∈ A then a⇩4 else if a⇩2 ∈ A then a⇩2 else if a⇩3 ∈ A then a⇩3 else a⇩1)"
definition [simp]: "bot = a⇩1"
definition [simp]: "top = a⇩4"
definition
"x ⊓ y = (case (x, y) of
(a⇩1, _) ⇒ a⇩1 | (_, a⇩1) ⇒ a⇩1 | (a⇩2, a⇩3) ⇒ a⇩1 | (a⇩3, a⇩2) ⇒ a⇩1
| (a⇩2, _) ⇒ a⇩2 | (_, a⇩2) ⇒ a⇩2
| (a⇩3, _) ⇒ a⇩3 | (_, a⇩3) ⇒ a⇩3
| _ ⇒ a⇩4)"
definition
"x ⊔ y = (case (x, y) of
(a⇩4, _) ⇒ a⇩4 | (_, a⇩4) ⇒ a⇩4 | (a⇩2, a⇩3) ⇒ a⇩4 | (a⇩3, a⇩2) ⇒ a⇩4
| (a⇩2, _) ⇒ a⇩2 | (_, a⇩2) ⇒ a⇩2
| (a⇩3, _) ⇒ a⇩3 | (_, a⇩3) ⇒ a⇩3
| _ ⇒ a⇩1)"
instance
by standard
(subproofs
‹auto simp add: less_finite_4_def less_eq_finite_4_def Inf_finite_4_def Sup_finite_4_def
inf_finite_4_def sup_finite_4_def split: finite_4.splits›)
end
instance finite_4 :: complete_lattice ..
instance finite_4 :: complete_distrib_lattice ..
instantiation finite_4 :: complete_boolean_algebra begin
definition "- x = (case x of a⇩1 ⇒ a⇩4 | a⇩2 ⇒ a⇩3 | a⇩3 ⇒ a⇩2 | a⇩4 ⇒ a⇩1)"
definition "x - y = x ⊓ - (y :: finite_4)"
instance
by standard
(subproofs
‹simp_all add: inf_finite_4_def sup_finite_4_def uminus_finite_4_def minus_finite_4_def
split: finite_4.splits›)
end
hide_const (open) a⇩1 a⇩2 a⇩3 a⇩4