Theory CStar
section ‹Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions›
theory CStar
imports NSCA
begin
subsection ‹Properties of the ‹*›-Transform Applied to Sets of Reals›
lemma STARC_hcomplex_of_complex_Int: "*s* X ∩ SComplex = hcomplex_of_complex ` X"
by (auto simp: Standard_def)
lemma lemma_not_hcomplexA: "x ∉ hcomplex_of_complex ` A ⟹ ∀y ∈ A. x ≠ hcomplex_of_complex y"
by auto
subsection ‹Theorems about Nonstandard Extensions of Functions›
lemma starfunC_hcpow: "⋀Z. ( *f* (λz. z ^ n)) Z = Z pow hypnat_of_nat n"
by transfer (rule refl)
lemma starfunCR_cmod: "*f* cmod = hcmod"
by transfer (rule refl)
subsection ‹Internal Functions - Some Redundancy With ‹*f*› Now›
lemma starfun_Re: "( *f* (λx. Re (f x))) = (λx. hRe (( *f* f) x))"
by transfer (rule refl)
lemma starfun_Im: "( *f* (λx. Im (f x))) = (λx. hIm (( *f* f) x))"
by transfer (rule refl)
lemma starfunC_eq_Re_Im_iff:
"( *f* f) x = z ⟷ ( *f* (λx. Re (f x))) x = hRe z ∧ ( *f* (λx. Im (f x))) x = hIm z"
by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
lemma starfunC_approx_Re_Im_iff:
"( *f* f) x ≈ z ⟷ ( *f* (λx. Re (f x))) x ≈ hRe z ∧ ( *f* (λx. Im (f x))) x ≈ hIm z"
by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
end