Theory NSComplex
section ‹Nonstandard Complex Numbers›
theory NSComplex
imports NSA
begin
type_synonym hcomplex = "complex star"
abbreviation hcomplex_of_complex :: "complex ⇒ complex star"
where "hcomplex_of_complex ≡ star_of"
abbreviation hcmod :: "complex star ⇒ real star"
where "hcmod ≡ hnorm"
subsubsection ‹Real and Imaginary parts›
definition hRe :: "hcomplex ⇒ hypreal"
where "hRe = *f* Re"
definition hIm :: "hcomplex ⇒ hypreal"
where "hIm = *f* Im"
subsubsection ‹Imaginary unit›
definition iii :: hcomplex
where "iii = star_of 𝗂"
subsubsection ‹Complex conjugate›
definition hcnj :: "hcomplex ⇒ hcomplex"
where "hcnj = *f* cnj"
subsubsection ‹Argand›
definition hsgn :: "hcomplex ⇒ hcomplex"
where "hsgn = *f* sgn"
definition harg :: "hcomplex ⇒ hypreal"
where "harg = *f* Arg"
definition
hcis :: "hypreal ⇒ hcomplex"
where "hcis = *f* cis"
subsubsection ‹Injection from hyperreals›
abbreviation hcomplex_of_hypreal :: "hypreal ⇒ hcomplex"
where "hcomplex_of_hypreal ≡ of_hypreal"
definition
hrcis :: "hypreal ⇒ hypreal ⇒ hcomplex"
where "hrcis = *f2* rcis"
subsubsection ‹‹e ^ (x + iy)››
definition hExp :: "hcomplex ⇒ hcomplex"
where "hExp = *f* exp"
definition HComplex :: "hypreal ⇒ hypreal ⇒ hcomplex"
where "HComplex = *f2* Complex"
lemmas hcomplex_defs [transfer_unfold] =
hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def
hrcis_def hExp_def HComplex_def
lemma Standard_hRe [simp]: "x ∈ Standard ⟹ hRe x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hIm [simp]: "x ∈ Standard ⟹ hIm x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_iii [simp]: "iii ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hcnj [simp]: "x ∈ Standard ⟹ hcnj x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hsgn [simp]: "x ∈ Standard ⟹ hsgn x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_harg [simp]: "x ∈ Standard ⟹ harg x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hcis [simp]: "r ∈ Standard ⟹ hcis r ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hExp [simp]: "x ∈ Standard ⟹ hExp x ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_hrcis [simp]: "r ∈ Standard ⟹ s ∈ Standard ⟹ hrcis r s ∈ Standard"
by (simp add: hcomplex_defs)
lemma Standard_HComplex [simp]: "r ∈ Standard ⟹ s ∈ Standard ⟹ HComplex r s ∈ Standard"
by (simp add: hcomplex_defs)
lemma hcmod_def: "hcmod = *f* cmod"
by (rule hnorm_def)
subsection ‹Properties of Nonstandard Real and Imaginary Parts›
lemma hcomplex_hRe_hIm_cancel_iff: "⋀w z. w = z ⟷ hRe w = hRe z ∧ hIm w = hIm z"
by transfer (rule complex_eq_iff)
lemma hcomplex_equality [intro?]: "⋀z w. hRe z = hRe w ⟹ hIm z = hIm w ⟹ z = w"
by transfer (rule complex_eqI)
lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0"
by transfer simp
lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0"
by transfer simp
lemma hcomplex_hRe_one [simp]: "hRe 1 = 1"
by transfer simp
lemma hcomplex_hIm_one [simp]: "hIm 1 = 0"
by transfer simp
subsection ‹Addition for Nonstandard Complex Numbers›
lemma hRe_add: "⋀x y. hRe (x + y) = hRe x + hRe y"
by transfer simp
lemma hIm_add: "⋀x y. hIm (x + y) = hIm x + hIm y"
by transfer simp
subsection ‹More Minus Laws›
lemma hRe_minus: "⋀z. hRe (- z) = - hRe z"
by transfer (rule uminus_complex.sel)
lemma hIm_minus: "⋀z. hIm (- z) = - hIm z"
by transfer (rule uminus_complex.sel)
lemma hcomplex_add_minus_eq_minus: "x + y = 0 ⟹ x = - y"
for x y :: hcomplex
apply (drule minus_unique)
apply (simp add: minus_equation_iff [of x y])
done
lemma hcomplex_i_mult_eq [simp]: "iii * iii = - 1"
by transfer (rule i_squared)
lemma hcomplex_i_mult_left [simp]: "⋀z. iii * (iii * z) = - z"
by transfer (rule complex_i_mult_minus)
lemma hcomplex_i_not_zero [simp]: "iii ≠ 0"
by transfer (rule complex_i_not_zero)
subsection ‹More Multiplication Laws›
lemma hcomplex_mult_minus_one: "- 1 * z = - z"
for z :: hcomplex
by simp
lemma hcomplex_mult_minus_one_right: "z * - 1 = - z"
for z :: hcomplex
by simp
lemma hcomplex_mult_left_cancel: "c ≠ 0 ⟹ c * a = c * b ⟷ a = b"
for a b c :: hcomplex
by simp
lemma hcomplex_mult_right_cancel: "c ≠ 0 ⟹ a * c = b * c ⟷ a = b"
for a b c :: hcomplex
by simp
subsection ‹Subtraction and Division›
lemma hcomplex_diff_eq_eq [simp]: "x - y = z ⟷ x = z + y"
for x y z :: hcomplex
by (rule diff_eq_eq)
subsection ‹Embedding Properties for \<^term>‹hcomplex_of_hypreal› Map›
lemma hRe_hcomplex_of_hypreal [simp]: "⋀z. hRe (hcomplex_of_hypreal z) = z"
by transfer (rule Re_complex_of_real)
lemma hIm_hcomplex_of_hypreal [simp]: "⋀z. hIm (hcomplex_of_hypreal z) = 0"
by transfer (rule Im_complex_of_real)
lemma hcomplex_of_epsilon_not_zero [simp]: "hcomplex_of_hypreal ε ≠ 0"
by (simp add: epsilon_not_zero)
subsection ‹‹HComplex› theorems›
lemma hRe_HComplex [simp]: "⋀x y. hRe (HComplex x y) = x"
by transfer simp
lemma hIm_HComplex [simp]: "⋀x y. hIm (HComplex x y) = y"
by transfer simp
lemma hcomplex_surj [simp]: "⋀z. HComplex (hRe z) (hIm z) = z"
by transfer (rule complex_surj)
lemma hcomplex_induct [case_names rect]:
"(⋀x y. P (HComplex x y)) ⟹ P z"
by (rule hcomplex_surj [THEN subst]) blast
subsection ‹Modulus (Absolute Value) of Nonstandard Complex Number›
lemma hcomplex_of_hypreal_abs:
"hcomplex_of_hypreal ¦x¦ = hcomplex_of_hypreal (hcmod (hcomplex_of_hypreal x))"
by simp
lemma HComplex_inject [simp]: "⋀x y x' y'. HComplex x y = HComplex x' y' ⟷ x = x' ∧ y = y'"
by transfer (rule complex.inject)
lemma HComplex_add [simp]:
"⋀x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1 + x2) (y1 + y2)"
by transfer (rule complex_add)
lemma HComplex_minus [simp]: "⋀x y. - HComplex x y = HComplex (- x) (- y)"
by transfer (rule complex_minus)
lemma HComplex_diff [simp]:
"⋀x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1 - x2) (y1 - y2)"
by transfer (rule complex_diff)
lemma HComplex_mult [simp]:
"⋀x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 = HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)"
by transfer (rule complex_mult)
text ‹‹HComplex_inverse› is proved below.›
lemma hcomplex_of_hypreal_eq: "⋀r. hcomplex_of_hypreal r = HComplex r 0"
by transfer (rule complex_of_real_def)
lemma HComplex_add_hcomplex_of_hypreal [simp]:
"⋀x y r. HComplex x y + hcomplex_of_hypreal r = HComplex (x + r) y"
by transfer (rule Complex_add_complex_of_real)
lemma hcomplex_of_hypreal_add_HComplex [simp]:
"⋀r x y. hcomplex_of_hypreal r + HComplex x y = HComplex (r + x) y"
by transfer (rule complex_of_real_add_Complex)
lemma HComplex_mult_hcomplex_of_hypreal:
"⋀x y r. HComplex x y * hcomplex_of_hypreal r = HComplex (x * r) (y * r)"
by transfer (rule Complex_mult_complex_of_real)
lemma hcomplex_of_hypreal_mult_HComplex:
"⋀r x y. hcomplex_of_hypreal r * HComplex x y = HComplex (r * x) (r * y)"
by transfer (rule complex_of_real_mult_Complex)
lemma i_hcomplex_of_hypreal [simp]: "⋀r. iii * hcomplex_of_hypreal r = HComplex 0 r"
by transfer (rule i_complex_of_real)
lemma hcomplex_of_hypreal_i [simp]: "⋀r. hcomplex_of_hypreal r * iii = HComplex 0 r"
by transfer (rule complex_of_real_i)
subsection ‹Conjugation›
lemma hcomplex_hcnj_cancel_iff [iff]: "⋀x y. hcnj x = hcnj y ⟷ x = y"
by transfer (rule complex_cnj_cancel_iff)
lemma hcomplex_hcnj_hcnj [simp]: "⋀z. hcnj (hcnj z) = z"
by transfer (rule complex_cnj_cnj)
lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]:
"⋀x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x"
by transfer (rule complex_cnj_complex_of_real)
lemma hcomplex_hmod_hcnj [simp]: "⋀z. hcmod (hcnj z) = hcmod z"
by transfer (rule complex_mod_cnj)
lemma hcomplex_hcnj_minus: "⋀z. hcnj (- z) = - hcnj z"
by transfer (rule complex_cnj_minus)
lemma hcomplex_hcnj_inverse: "⋀z. hcnj (inverse z) = inverse (hcnj z)"
by transfer (rule complex_cnj_inverse)
lemma hcomplex_hcnj_add: "⋀w z. hcnj (w + z) = hcnj w + hcnj z"
by transfer (rule complex_cnj_add)
lemma hcomplex_hcnj_diff: "⋀w z. hcnj (w - z) = hcnj w - hcnj z"
by transfer (rule complex_cnj_diff)
lemma hcomplex_hcnj_mult: "⋀w z. hcnj (w * z) = hcnj w * hcnj z"
by transfer (rule complex_cnj_mult)
lemma hcomplex_hcnj_divide: "⋀w z. hcnj (w / z) = hcnj w / hcnj z"
by transfer (rule complex_cnj_divide)
lemma hcnj_one [simp]: "hcnj 1 = 1"
by transfer (rule complex_cnj_one)
lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0"
by transfer (rule complex_cnj_zero)
lemma hcomplex_hcnj_zero_iff [iff]: "⋀z. hcnj z = 0 ⟷ z = 0"
by transfer (rule complex_cnj_zero_iff)
lemma hcomplex_mult_hcnj: "⋀z. z * hcnj z = hcomplex_of_hypreal ((hRe z)⇧2 + (hIm z)⇧2)"
by transfer (rule complex_mult_cnj)
subsection ‹More Theorems about the Function \<^term>‹hcmod››
lemma hcmod_hcomplex_of_hypreal_of_nat [simp]:
"hcmod (hcomplex_of_hypreal (hypreal_of_nat n)) = hypreal_of_nat n"
by simp
lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]:
"hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n"
by simp
lemma hcmod_mult_hcnj: "⋀z. hcmod (z * hcnj z) = (hcmod z)⇧2"
by transfer (rule complex_mod_mult_cnj)
lemma hcmod_triangle_ineq2 [simp]: "⋀a b. hcmod (b + a) - hcmod b ≤ hcmod a"
by transfer (rule complex_mod_triangle_ineq2)
lemma hcmod_diff_ineq [simp]: "⋀a b. hcmod a - hcmod b ≤ hcmod (a + b)"
by transfer (rule norm_diff_ineq)
subsection ‹Exponentiation›
lemma hcomplexpow_0 [simp]: "z ^ 0 = 1"
for z :: hcomplex
by (rule power_0)
lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = z * (z ^ n)"
for z :: hcomplex
by (rule power_Suc)
lemma hcomplexpow_i_squared [simp]: "iii⇧2 = -1"
by transfer (rule power2_i)
lemma hcomplex_of_hypreal_pow: "⋀x. hcomplex_of_hypreal (x ^ n) = hcomplex_of_hypreal x ^ n"
by transfer (rule of_real_power)
lemma hcomplex_hcnj_pow: "⋀z. hcnj (z ^ n) = hcnj z ^ n"
by transfer (rule complex_cnj_power)
lemma hcmod_hcomplexpow: "⋀x. hcmod (x ^ n) = hcmod x ^ n"
by transfer (rule norm_power)
lemma hcpow_minus:
"⋀x n. (- x :: hcomplex) pow n = (if ( *p* even) n then (x pow n) else - (x pow n))"
by transfer simp
lemma hcpow_mult: "(r * s) pow n = (r pow n) * (s pow n)"
for r s :: hcomplex
by (fact hyperpow_mult)
lemma hcpow_zero2 [simp]: "⋀n. 0 pow (hSuc n) = (0::'a::semiring_1 star)"
by transfer (rule power_0_Suc)
lemma hcpow_not_zero [simp,intro]: "⋀r n. r ≠ 0 ⟹ r pow n ≠ (0::hcomplex)"
by (fact hyperpow_not_zero)
lemma hcpow_zero_zero: "r pow n = 0 ⟹ r = 0"
for r :: hcomplex
by (blast intro: ccontr dest: hcpow_not_zero)
subsection ‹The Function \<^term>‹hsgn››
lemma hsgn_zero [simp]: "hsgn 0 = 0"
by transfer (rule sgn_zero)
lemma hsgn_one [simp]: "hsgn 1 = 1"
by transfer (rule sgn_one)
lemma hsgn_minus: "⋀z. hsgn (- z) = - hsgn z"
by transfer (rule sgn_minus)
lemma hsgn_eq: "⋀z. hsgn z = z / hcomplex_of_hypreal (hcmod z)"
by transfer (rule sgn_eq)
lemma hcmod_i: "⋀x y. hcmod (HComplex x y) = ( *f* sqrt) (x⇧2 + y⇧2)"
by transfer (rule complex_norm)
lemma hcomplex_eq_cancel_iff1 [simp]:
"hcomplex_of_hypreal xa = HComplex x y ⟷ xa = x ∧ y = 0"
by (simp add: hcomplex_of_hypreal_eq)
lemma hcomplex_eq_cancel_iff2 [simp]:
"HComplex x y = hcomplex_of_hypreal xa ⟷ x = xa ∧ y = 0"
by (simp add: hcomplex_of_hypreal_eq)
lemma HComplex_eq_0 [simp]: "⋀x y. HComplex x y = 0 ⟷ x = 0 ∧ y = 0"
by transfer (rule Complex_eq_0)
lemma HComplex_eq_1 [simp]: "⋀x y. HComplex x y = 1 ⟷ x = 1 ∧ y = 0"
by transfer (rule Complex_eq_1)
lemma i_eq_HComplex_0_1: "iii = HComplex 0 1"
by transfer (simp add: complex_eq_iff)
lemma HComplex_eq_i [simp]: "⋀x y. HComplex x y = iii ⟷ x = 0 ∧ y = 1"
by transfer (rule Complex_eq_i)
lemma hRe_hsgn [simp]: "⋀z. hRe (hsgn z) = hRe z / hcmod z"
by transfer (rule Re_sgn)
lemma hIm_hsgn [simp]: "⋀z. hIm (hsgn z) = hIm z / hcmod z"
by transfer (rule Im_sgn)
lemma HComplex_inverse: "⋀x y. inverse (HComplex x y) = HComplex (x / (x⇧2 + y⇧2)) (- y / (x⇧2 + y⇧2))"
by transfer (rule complex_inverse)
lemma hRe_mult_i_eq[simp]: "⋀y. hRe (iii * hcomplex_of_hypreal y) = 0"
by transfer simp
lemma hIm_mult_i_eq [simp]: "⋀y. hIm (iii * hcomplex_of_hypreal y) = y"
by transfer simp
lemma hcmod_mult_i [simp]: "⋀y. hcmod (iii * hcomplex_of_hypreal y) = ¦y¦"
by transfer (simp add: norm_complex_def)
lemma hcmod_mult_i2 [simp]: "⋀y. hcmod (hcomplex_of_hypreal y * iii) = ¦y¦"
by transfer (simp add: norm_complex_def)
subsubsection ‹‹harg››
lemma cos_harg_i_mult_zero [simp]: "⋀y. y ≠ 0 ⟹ ( *f* cos) (harg (HComplex 0 y)) = 0"
by transfer (simp add: Complex_eq)
subsection ‹Polar Form for Nonstandard Complex Numbers›
lemma complex_split_polar2: "∀n. ∃r a. (z n) = complex_of_real r * Complex (cos a) (sin a)"
unfolding Complex_eq by (auto intro: complex_split_polar)
lemma hcomplex_split_polar:
"⋀z. ∃r a. z = hcomplex_of_hypreal r * (HComplex (( *f* cos) a) (( *f* sin) a))"
by transfer (simp add: Complex_eq complex_split_polar)
lemma hcis_eq:
"⋀a. hcis a = hcomplex_of_hypreal (( *f* cos) a) + iii * hcomplex_of_hypreal (( *f* sin) a)"
by transfer (simp add: complex_eq_iff)
lemma hrcis_Ex: "⋀z. ∃r a. z = hrcis r a"
by transfer (rule rcis_Ex)
lemma hRe_hcomplex_polar [simp]:
"⋀r a. hRe (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* cos) a"
by transfer simp
lemma hRe_hrcis [simp]: "⋀r a. hRe (hrcis r a) = r * ( *f* cos) a"
by transfer (rule Re_rcis)
lemma hIm_hcomplex_polar [simp]:
"⋀r a. hIm (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* sin) a"
by transfer simp
lemma hIm_hrcis [simp]: "⋀r a. hIm (hrcis r a) = r * ( *f* sin) a"
by transfer (rule Im_rcis)
lemma hcmod_unit_one [simp]: "⋀a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1"
by transfer (simp add: cmod_unit_one)
lemma hcmod_complex_polar [simp]:
"⋀r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = ¦r¦"
by transfer (simp add: Complex_eq cmod_complex_polar)
lemma hcmod_hrcis [simp]: "⋀r a. hcmod(hrcis r a) = ¦r¦"
by transfer (rule complex_mod_rcis)
text ‹‹(r1 * hrcis a) * (r2 * hrcis b) = r1 * r2 * hrcis (a + b)››
lemma hcis_hrcis_eq: "⋀a. hcis a = hrcis 1 a"
by transfer (rule cis_rcis_eq)
declare hcis_hrcis_eq [symmetric, simp]
lemma hrcis_mult: "⋀a b r1 r2. hrcis r1 a * hrcis r2 b = hrcis (r1 * r2) (a + b)"
by transfer (rule rcis_mult)
lemma hcis_mult: "⋀a b. hcis a * hcis b = hcis (a + b)"
by transfer (rule cis_mult)
lemma hcis_zero [simp]: "hcis 0 = 1"
by transfer (rule cis_zero)
lemma hrcis_zero_mod [simp]: "⋀a. hrcis 0 a = 0"
by transfer (rule rcis_zero_mod)
lemma hrcis_zero_arg [simp]: "⋀r. hrcis r 0 = hcomplex_of_hypreal r"
by transfer (rule rcis_zero_arg)
lemma hcomplex_i_mult_minus [simp]: "⋀x. iii * (iii * x) = - x"
by transfer (rule complex_i_mult_minus)
lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x"
by simp
lemma hcis_hypreal_of_nat_Suc_mult:
"⋀a. hcis (hypreal_of_nat (Suc n) * a) = hcis a * hcis (hypreal_of_nat n * a)"
by transfer (simp add: distrib_right cis_mult)
lemma NSDeMoivre: "⋀a. (hcis a) ^ n = hcis (hypreal_of_nat n * a)"
by transfer (rule DeMoivre)
lemma hcis_hypreal_of_hypnat_Suc_mult:
"⋀a n. hcis (hypreal_of_hypnat (n + 1) * a) = hcis a * hcis (hypreal_of_hypnat n * a)"
by transfer (simp add: distrib_right cis_mult)
lemma NSDeMoivre_ext: "⋀a n. (hcis a) pow n = hcis (hypreal_of_hypnat n * a)"
by transfer (rule DeMoivre)
lemma NSDeMoivre2: "⋀a r. (hrcis r a) ^ n = hrcis (r ^ n) (hypreal_of_nat n * a)"
by transfer (rule DeMoivre2)
lemma DeMoivre2_ext: "⋀a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal_of_hypnat n * a)"
by transfer (rule DeMoivre2)
lemma hcis_inverse [simp]: "⋀a. inverse (hcis a) = hcis (- a)"
by transfer (rule cis_inverse)
lemma hrcis_inverse: "⋀a r. inverse (hrcis r a) = hrcis (inverse r) (- a)"
by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric])
lemma hRe_hcis [simp]: "⋀a. hRe (hcis a) = ( *f* cos) a"
by transfer simp
lemma hIm_hcis [simp]: "⋀a. hIm (hcis a) = ( *f* sin) a"
by transfer simp
lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe (hcis a ^ n)"
by (simp add: NSDeMoivre)
lemma sin_n_hIm_hcis_pow_n: "( *f* sin) (hypreal_of_nat n * a) = hIm (hcis a ^ n)"
by (simp add: NSDeMoivre)
lemma cos_n_hRe_hcis_hcpow_n: "( *f* cos) (hypreal_of_hypnat n * a) = hRe (hcis a pow n)"
by (simp add: NSDeMoivre_ext)
lemma sin_n_hIm_hcis_hcpow_n: "( *f* sin) (hypreal_of_hypnat n * a) = hIm (hcis a pow n)"
by (simp add: NSDeMoivre_ext)
lemma hExp_add: "⋀a b. hExp (a + b) = hExp a * hExp b"
by transfer (rule exp_add)
subsection ‹\<^term>‹hcomplex_of_complex›: the Injection from type \<^typ>‹complex› to to \<^typ>‹hcomplex››
lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex 𝗂"
by (rule iii_def)
lemma hRe_hcomplex_of_complex: "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)"
by transfer (rule refl)
lemma hIm_hcomplex_of_complex: "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)"
by transfer (rule refl)
lemma hcmod_hcomplex_of_complex: "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)"
by transfer (rule refl)
subsection ‹Numerals and Arithmetic›
lemma hcomplex_of_hypreal_eq_hcomplex_of_complex:
"hcomplex_of_hypreal (hypreal_of_real x) = hcomplex_of_complex (complex_of_real x)"
by transfer (rule refl)
lemma hcomplex_hypreal_numeral:
"hcomplex_of_complex (numeral w) = hcomplex_of_hypreal(numeral w)"
by transfer (rule of_real_numeral [symmetric])
lemma hcomplex_hypreal_neg_numeral:
"hcomplex_of_complex (- numeral w) = hcomplex_of_hypreal(- numeral w)"
by transfer (rule of_real_neg_numeral [symmetric])
lemma hcomplex_numeral_hcnj [simp]: "hcnj (numeral v :: hcomplex) = numeral v"
by transfer (rule complex_cnj_numeral)
lemma hcomplex_numeral_hcmod [simp]: "hcmod (numeral v :: hcomplex) = (numeral v :: hypreal)"
by transfer (rule norm_numeral)
lemma hcomplex_neg_numeral_hcmod [simp]: "hcmod (- numeral v :: hcomplex) = (numeral v :: hypreal)"
by transfer (rule norm_neg_numeral)
lemma hcomplex_numeral_hRe [simp]: "hRe (numeral v :: hcomplex) = numeral v"
by transfer (rule complex_Re_numeral)
lemma hcomplex_numeral_hIm [simp]: "hIm (numeral v :: hcomplex) = 0"
by transfer (rule complex_Im_numeral)
end