Theory Listn
section ‹Fixed Length Lists›
theory Listn
imports Err
begin
definition list :: "nat ⇒ 'a set ⇒ 'a list set" where
"list n A == {xs. length xs = n & set xs <= A}"
definition le :: "'a ord ⇒ ('a list)ord" where
"le r == list_all2 (%x y. x <=_r y)"
abbreviation
lesublist_syntax :: "'a list ⇒ 'a ord ⇒ 'a list ⇒ bool"
("(_ /<=[_] _)" [50, 0, 51] 50)
where "x <=[r] y == x <=_(le r) y"
abbreviation
lesssublist_syntax :: "'a list ⇒ 'a ord ⇒ 'a list ⇒ bool"
("(_ /<[_] _)" [50, 0, 51] 50)
where "x <[r] y == x <_(le r) y"
definition map2 :: "('a ⇒ 'b ⇒ 'c) ⇒ 'a list ⇒ 'b list ⇒ 'c list" where
"map2 f == (%xs ys. map (case_prod f) (zip xs ys))"
abbreviation
plussublist_syntax :: "'a list ⇒ ('a ⇒ 'b ⇒ 'c) ⇒ 'b list ⇒ 'c list"
("(_ /+[_] _)" [65, 0, 66] 65)
where "x +[f] y == x +_(map2 f) y"
primrec coalesce :: "'a err list ⇒ 'a list err" where
"coalesce [] = OK[]"
| "coalesce (ex#exs) = Err.sup (#) ex (coalesce exs)"
definition sl :: "nat ⇒ 'a sl ⇒ 'a list sl" where
"sl n == %(A,r,f). (list n A, le r, map2 f)"
definition sup :: "('a ⇒ 'b ⇒ 'c err) ⇒ 'a list ⇒ 'b list ⇒ 'c list err" where
"sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err"
definition upto_esl :: "nat ⇒ 'a esl ⇒ 'a list esl" where
"upto_esl m == %(A,r,f). (⋃{list n A |n. n <= m}, le r, sup f)"
lemmas [simp] = set_update_subsetI
lemma unfold_lesub_list:
"xs <=[r] ys == Listn.le r xs ys"
by (simp add: lesub_def)
lemma Nil_le_conv [iff]:
"([] <=[r] ys) = (ys = [])"
apply (unfold lesub_def Listn.le_def)
apply simp
done
lemma Cons_notle_Nil [iff]:
"~ x#xs <=[r] []"
apply (unfold lesub_def Listn.le_def)
apply simp
done
lemma Cons_le_Cons [iff]:
"x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)"
apply (unfold lesub_def Listn.le_def)
apply simp
done
lemma Cons_less_Conss [simp]:
"order r ⟹
x#xs <_(Listn.le r) y#ys =
(x <_r y & xs <=[r] ys | x = y & xs <_(Listn.le r) ys)"
apply (unfold lesssub_def)
apply blast
done
lemma list_update_le_cong:
"⟦ i<size xs; xs <=[r] ys; x <=_r y ⟧ ⟹ xs[i:=x] <=[r] ys[i:=y]"
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (simp add: list_all2_conv_all_nth nth_list_update)
done
lemma le_listD:
"⟦ xs <=[r] ys; p < size xs ⟧ ⟹ xs!p <=_r ys!p"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_conv_all_nth)
done
lemma le_list_refl:
"∀x. x <=_r x ⟹ xs <=[r] xs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma le_list_trans:
"⟦ order r; xs <=[r] ys; ys <=[r] zs ⟧ ⟹ xs <=[r] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply clarify
apply simp
apply (blast intro: order_trans)
done
lemma le_list_antisym:
"⟦ order r; xs <=[r] ys; ys <=[r] xs ⟧ ⟹ xs = ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (rule nth_equalityI)
apply blast
apply clarify
apply simp
apply (blast intro: order_antisym)
done
lemma order_listI [simp, intro!]:
"order r ⟹ order(Listn.le r)"
apply (subst Semilat.order_def)
apply (blast intro: le_list_refl le_list_trans le_list_antisym
dest: order_refl)
done
lemma lesub_list_impl_same_size [simp]:
"xs <=[r] ys ⟹ size ys = size xs"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_conv_all_nth)
done
lemma lesssub_list_impl_same_size:
"xs <_(Listn.le r) ys ⟹ size ys = size xs"
apply (unfold lesssub_def)
apply auto
done
lemma le_list_appendI:
"⋀b c d. a <=[r] b ⟹ c <=[r] d ⟹ a@c <=[r] b@d"
apply (induct a)
apply simp
apply (case_tac b)
apply auto
done
lemma le_listI:
"length a = length b ⟹ (⋀n. n < length a ⟹ a!n <=_r b!n) ⟹ a <=[r] b"
apply (unfold lesub_def Listn.le_def)
apply (simp add: list_all2_conv_all_nth)
done
lemma listI:
"⟦ length xs = n; set xs <= A ⟧ ⟹ xs ∈ list n A"
apply (unfold list_def)
apply blast
done
lemma listE_length [simp]:
"xs ∈ list n A ⟹ length xs = n"
apply (unfold list_def)
apply blast
done
lemma less_lengthI:
"⟦ xs ∈ list n A; p < n ⟧ ⟹ p < length xs"
by simp
lemma listE_set [simp]:
"xs ∈ list n A ⟹ set xs <= A"
apply (unfold list_def)
apply blast
done
lemma list_0 [simp]:
"list 0 A = {[]}"
apply (unfold list_def)
apply auto
done
lemma in_list_Suc_iff:
"(xs ∈ list (Suc n) A) = (∃y∈ A. ∃ys∈ list n A. xs = y#ys)"
apply (unfold list_def)
apply (case_tac "xs")
apply auto
done
lemma Cons_in_list_Suc [iff]:
"(x#xs ∈ list (Suc n) A) = (x∈ A & xs ∈ list n A)"
apply (simp add: in_list_Suc_iff)
done
lemma list_not_empty:
"∃a. a∈ A ⟹ ∃xs. xs ∈ list n A"
apply (induct "n")
apply simp
apply (simp add: in_list_Suc_iff)
apply blast
done
lemma nth_in [rule_format, simp]:
"∀i n. length xs = n ⟶ set xs <= A ⟶ i < n ⟶ (xs!i) ∈ A"
apply (induct "xs")
apply simp
apply (simp add: nth_Cons split: nat.split)
done
lemma listE_nth_in:
"⟦ xs ∈ list n A; i < n ⟧ ⟹ (xs!i) ∈ A"
by auto
lemma listn_Cons_Suc [elim!]:
"l#xs ∈ list n A ⟹ (⋀n'. n = Suc n' ⟹ l ∈ A ⟹ xs ∈ list n' A ⟹ P) ⟹ P"
by (cases n) auto
lemma listn_appendE [elim!]:
"a@b ∈ list n A ⟹ (⋀n1 n2. n=n1+n2 ⟹ a ∈ list n1 A ⟹ b ∈ list n2 A ⟹ P) ⟹ P"
proof -
have "⋀n. a@b ∈ list n A ⟹ ∃n1 n2. n=n1+n2 ∧ a ∈ list n1 A ∧ b ∈ list n2 A"
(is "⋀n. ?list a n ⟹ ∃n1 n2. ?P a n n1 n2")
proof (induct a)
fix n assume "?list [] n"
hence "?P [] n 0 n" by simp
thus "∃n1 n2. ?P [] n n1 n2" by fast
next
fix n l ls
assume "?list (l#ls) n"
then obtain n' where n: "n = Suc n'" "l ∈ A" and list_n': "ls@b ∈ list n' A" by fastforce
assume "⋀n. ls @ b ∈ list n A ⟹ ∃n1 n2. n = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A"
hence "∃n1 n2. n' = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A" by this (rule list_n')
then obtain n1 n2 where "n' = n1 + n2" "ls ∈ list n1 A" "b ∈ list n2 A" by fast
with n have "?P (l#ls) n (n1+1) n2" by simp
thus "∃n1 n2. ?P (l#ls) n n1 n2" by fastforce
qed
moreover
assume "a@b ∈ list n A" "⋀n1 n2. n=n1+n2 ⟹ a ∈ list n1 A ⟹ b ∈ list n2 A ⟹ P"
ultimately
show ?thesis by blast
qed
lemma listt_update_in_list [simp, intro!]:
"⟦ xs ∈ list n A; x∈ A ⟧ ⟹ xs[i := x] ∈ list n A"
apply (unfold list_def)
apply simp
done
lemma plus_list_Nil [simp]:
"[] +[f] xs = []"
apply (unfold plussub_def map2_def)
apply simp
done
lemma plus_list_Cons [simp]:
"(x#xs) +[f] ys = (case ys of [] ⇒ [] | y#ys ⇒ (x +_f y)#(xs +[f] ys))"
by (simp add: plussub_def map2_def split: list.split)
lemma length_plus_list [rule_format, simp]:
"∀ys. length(xs +[f] ys) = min(length xs) (length ys)"
apply (induct xs)
apply simp
apply clarify
apply (simp (no_asm_simp) split: list.split)
done
lemma nth_plus_list [rule_format, simp]:
"∀xs ys i. length xs = n ⟶ length ys = n ⟶ i<n ⟶
(xs +[f] ys)!i = (xs!i) +_f (ys!i)"
apply (induct n)
apply simp
apply clarify
apply (case_tac xs)
apply simp
apply (force simp add: nth_Cons split: list.split nat.split)
done
lemma (in Semilat) plus_list_ub1 [rule_format]:
"⟦ set xs <= A; set ys <= A; size xs = size ys ⟧
⟹ xs <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) plus_list_ub2:
"⟦set xs <= A; set ys <= A; size xs = size ys ⟧
⟹ ys <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) plus_list_lub [rule_format]:
shows "∀xs ys zs. set xs <= A ⟶ set ys <= A ⟶ set zs <= A
⟶ size xs = n & size ys = n ⟶
xs <=[r] zs & ys <=[r] zs ⟶ xs +[f] ys <=[r] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
lemma (in Semilat) list_update_incr [rule_format]:
"x∈ A ⟹ set xs <= A ⟶
(∀i. i<size xs ⟶ xs <=[r] xs[i := x +_f xs!i])"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (induct xs)
apply simp
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: nth_Cons split: nat.split)
done
lemma acc_le_listI [intro!]:
"⟦ order r; acc r ⟧ ⟹ acc(Listn.le r)"
apply (unfold acc_def)
apply (subgoal_tac
"wf(UN n. {(ys,xs). size xs = n ∧ size ys = n ∧ xs <_(Listn.le r) ys})")
apply (erule wf_subset)
apply (blast intro: lesssub_list_impl_same_size)
apply (rule wf_UN)
prefer 2
apply (rename_tac m n)
apply (case_tac "m=n")
apply simp
apply (fast intro!: equals0I dest: not_sym)
apply (rename_tac n)
apply (induct_tac n)
apply (simp add: lesssub_def cong: conj_cong)
apply (rename_tac k)
apply (simp add: wf_eq_minimal)
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong)
apply clarify
apply (rename_tac M m)
apply (case_tac "∃x xs. size xs = k ∧ x#xs ∈ M")
prefer 2
apply (erule thin_rl)
apply (erule thin_rl)
apply blast
apply (erule_tac x = "{a. ∃xs. size xs = k ∧ a#xs ∈ M}" in allE)
apply (erule impE)
apply blast
apply (thin_tac "∃x xs. P x xs" for P)
apply clarify
apply (rename_tac maxA xs)
apply (erule_tac x = "{ys. size ys = size xs ∧ maxA#ys ∈ M}" in allE)
apply (erule impE)
apply blast
apply clarify
apply (thin_tac "m ∈ M")
apply (thin_tac "maxA#xs ∈ M")
apply (rule bexI)
prefer 2
apply assumption
apply clarify
apply simp
apply blast
done
lemma closed_listI:
"closed S f ⟹ closed (list n S) (map2 f)"
apply (unfold closed_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply simp
done
lemma Listn_sl_aux:
assumes "semilat (A, r, f)" shows "semilat (Listn.sl n (A,r,f))"
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show ?thesis
apply (unfold Listn.sl_def)
apply (simp (no_asm) only: semilat_Def split_conv)
apply (rule conjI)
apply simp
apply (rule conjI)
apply (simp only: closedI closed_listI)
apply (simp (no_asm) only: list_def)
apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub)
done
qed
lemma Listn_sl: "⋀L. semilat L ⟹ semilat (Listn.sl n L)"
by(simp add: Listn_sl_aux split_tupled_all)
lemma coalesce_in_err_list [rule_format]:
"∀xes. xes ∈ list n (err A) ⟶ coalesce xes ∈ err(list n A)"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split)
apply force
done
lemma lem: "⋀x xs. x +_(#) xs = x#xs"
by (simp add: plussub_def)
lemma coalesce_eq_OK1_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ⟹
∀xs. xs ∈ list n A ⟶ (∀ys. ys ∈ list n A ⟶
(∀zs. coalesce (xs +[f] ys) = OK zs ⟶ xs <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK1)
done
lemma coalesce_eq_OK2_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ⟹
∀xs. xs ∈ list n A ⟶ (∀ys. ys ∈ list n A ⟶
(∀zs. coalesce (xs +[f] ys) = OK zs ⟶ ys <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK2)
done
lemma lift2_le_ub:
"⟦ semilat(err A, Err.le r, lift2 f); x∈ A; y∈ A; x +_f y = OK z;
u∈ A; x <=_r u; y <=_r u ⟧ ⟹ z <=_r u"
apply (unfold semilat_Def plussub_def err_def)
apply (simp add: lift2_def)
apply clarify
apply (rotate_tac -3)
apply (erule thin_rl)
apply (erule thin_rl)
apply force
done
lemma coalesce_eq_OK_ub_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ⟹
∀xs. xs ∈ list n A ⟶ (∀ys. ys ∈ list n A ⟶
(∀zs us. coalesce (xs +[f] ys) = OK zs ∧ xs <=[r] us ∧ ys <=[r] us
∧ us ∈ list n A ⟶ zs <=[r] us))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def)
apply clarify
apply (rule conjI)
apply (blast intro: lift2_le_ub)
apply blast
done
lemma lift2_eq_ErrD:
"⟦ x +_f y = Err; semilat(err A, Err.le r, lift2 f); x∈ A; y∈ A ⟧
⟹ ~(∃u∈ A. x <=_r u & y <=_r u)"
by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1])
lemma coalesce_eq_Err_D [rule_format]:
"⟦ semilat(err A, Err.le r, lift2 f) ⟧
⟹ ∀xs. xs ∈ list n A ⟶ (∀ys. ys ∈ list n A ⟶
coalesce (xs +[f] ys) = Err ⟶
¬(∃zs∈ list n A. xs <=[r] zs ∧ ys <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (blast dest: lift2_eq_ErrD)
done
lemma closed_err_lift2_conv:
"closed (err A) (lift2 f) = (∀x∈ A. ∀y∈ A. x +_f y ∈ err A)"
apply (unfold closed_def)
apply (simp add: err_def)
done
lemma closed_map2_list [rule_format]:
"closed (err A) (lift2 f) ⟹
∀xs. xs ∈ list n A ⟶ (∀ys. ys ∈ list n A ⟶
map2 f xs ys ∈ list n (err A))"
apply (unfold map2_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: plussub_def closed_err_lift2_conv)
done
lemma closed_lift2_sup:
"closed (err A) (lift2 f) ⟹
closed (err (list n A)) (lift2 (sup f))"
by (fastforce simp add: closed_def plussub_def sup_def lift2_def
coalesce_in_err_list closed_map2_list
split: err.split)
lemma err_semilat_sup:
"err_semilat (A,r,f) ⟹
err_semilat (list n A, Listn.le r, sup f)"
apply (unfold Err.sl_def)
apply (simp only: split_conv)
apply (simp (no_asm) only: semilat_Def plussub_def)
apply (simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_sup)
apply (rule conjI)
apply (drule Semilat.orderI [OF Semilat.intro])
apply simp
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def lift2_def)
apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split)
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D)
done
lemma err_semilat_upto_esl:
"⋀L. err_semilat L ⟹ err_semilat(upto_esl m L)"
apply (unfold Listn.upto_esl_def)
apply (simp (no_asm_simp) only: split_tupled_all)
apply simp
apply (fastforce intro!: err_semilat_UnionI err_semilat_sup
dest: lesub_list_impl_same_size
simp add: plussub_def Listn.sup_def)
done
end