Theory Err

(*  Title:      HOL/MicroJava/DFA/Err.thy
    Author:     Tobias Nipkow
    Copyright   2000 TUM
*)

section ‹The Error Type›

theory Err
imports Semilat
begin

datatype 'a err = Err | OK 'a

type_synonym 'a ebinop = "'a  'a  'a err"
type_synonym 'a esl = "'a set * 'a ord * 'a ebinop"

primrec ok_val :: "'a err  'a" where
  "ok_val (OK x) = x"

definition lift :: "('a  'b err)  ('a err  'b err)" where
"lift f e == case e of Err  Err | OK x  f x"

definition lift2 :: "('a  'b  'c err)  'a err  'b err  'c err" where
"lift2 f e1 e2 ==
 case e1 of Err   Err
          | OK x  (case e2 of Err  Err | OK y  f x y)"

definition le :: "'a ord  'a err ord" where
"le r e1 e2 ==
        case e2 of Err  True |
                   OK y  (case e1 of Err  False | OK x  x <=_r y)"

definition sup :: "('a  'b  'c)  ('a err  'b err  'c err)" where
"sup f == lift2(%x y. OK(x +_f y))"

definition err :: "'a set  'a err set" where
"err A == insert Err {x . yA. x = OK y}"

definition esl :: "'a sl  'a esl" where
"esl == %(A,r,f). (A,r, %x y. OK(f x y))"

definition sl :: "'a esl  'a err sl" where
"sl == %(A,r,f). (err A, le r, lift2 f)"

abbreviation
  err_semilat :: "'a esl  bool"
  where "err_semilat L == semilat(Err.sl L)"


primrec strict :: "('a  'b err)  ('a err  'b err)" where
  "strict f Err    = Err"
| "strict f (OK x) = f x"

lemma strict_Some [simp]: 
  "(strict f x = OK y) = ( z. x = OK z  f z = OK y)"
  by (cases x, auto)

lemma not_Err_eq:
  "(x  Err) = (a. x = OK a)" 
  by (cases x) auto

lemma not_OK_eq:
  "(y. x  OK y) = (x = Err)"
  by (cases x) auto  

lemma unfold_lesub_err:
  "e1 <=_(le r) e2 == le r e1 e2"
  by (simp add: lesub_def)

lemma le_err_refl:
  "x. x <=_r x  e <=_(Err.le r) e"
apply (unfold lesub_def Err.le_def)
apply (simp split: err.split)
done 

lemma le_err_trans [rule_format]:
  "order r  e1 <=_(le r) e2  e2 <=_(le r) e3  e1 <=_(le r) e3"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done

lemma le_err_antisym [rule_format]:
  "order r  e1 <=_(le r) e2  e2 <=_(le r) e1  e1=e2"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done 

lemma OK_le_err_OK:
  "(OK x <=_(le r) OK y) = (x <=_r y)"
  by (simp add: unfold_lesub_err le_def)

lemma order_le_err [iff]:
  "order(le r) = order r"
apply (rule iffI)
 apply (subst Semilat.order_def)
 apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]
              intro: order_trans OK_le_err_OK [THEN iffD1])
apply (subst Semilat.order_def)
apply (blast intro: le_err_refl le_err_trans le_err_antisym
             dest: order_refl)
done 

lemma le_Err [iff]:  "e <=_(le r) Err"
  by (simp add: unfold_lesub_err le_def)

lemma Err_le_conv [iff]:
 "Err <=_(le r) e  = (e = Err)"
  by (simp add: unfold_lesub_err le_def  split: err.split)

lemma le_OK_conv [iff]:
  "e <=_(le r) OK x  =  (y. e = OK y & y <=_r x)"
  by (simp add: unfold_lesub_err le_def split: err.split)

lemma OK_le_conv:
 "OK x <=_(le r) e  =  (e = Err | (y. e = OK y & x <=_r y))"
  by (simp add: unfold_lesub_err le_def split: err.split)

lemma top_Err [iff]: "top (le r) Err"
  by (simp add: top_def)

lemma OK_less_conv [rule_format, iff]:
  "OK x <_(le r) e = (e=Err | (y. e = OK y & x <_r y))"
  by (simp add: lesssub_def lesub_def le_def split: err.split)

lemma not_Err_less [rule_format, iff]:
  "~(Err <_(le r) x)"
  by (simp add: lesssub_def lesub_def le_def split: err.split)

lemma semilat_errI [intro]:
  assumes semilat: "semilat (A, r, f)"
  shows "semilat(err A, Err.le r, lift2(%x y. OK(f x y)))"
  using semilat
  apply (simp only: semilat_Def closed_def plussub_def lesub_def 
    lift2_def Err.le_def err_def)
  apply (simp split: err.split)
  done

lemma err_semilat_eslI_aux:
  assumes semilat: "semilat (A, r, f)"
  shows "err_semilat(esl(A,r,f))"
  apply (unfold sl_def esl_def)
  apply (simp add: semilat_errI[OF semilat])
  done

lemma err_semilat_eslI [intro, simp]:
 "L. semilat L  err_semilat(esl L)"
by(simp add: err_semilat_eslI_aux split_tupled_all)

lemma acc_err [simp, intro!]:  "acc r  acc(le r)"
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify
apply (case_tac "Err  Q")
 apply blast
apply (erule_tac x = "{a . OK a  Q}" in allE)
apply (case_tac "x")
 apply fast
apply blast
done 

lemma Err_in_err [iff]: "Err  err A"
  by (simp add: err_def)

lemma Ok_in_err [iff]: "(OK x  err A) = (xA)"
  by (auto simp add: err_def)

subsection ‹lift›

lemma lift_in_errI:
  " e  err S; xS. e = OK x  f x  err S   lift f e  err S"
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done 

lemma Err_lift2 [simp]: 
  "Err +_(lift2 f) x = Err"
  by (simp add: lift2_def plussub_def)

lemma lift2_Err [simp]: 
  "x +_(lift2 f) Err = Err"
  by (simp add: lift2_def plussub_def split: err.split)

lemma OK_lift2_OK [simp]:
  "OK x +_(lift2 f) OK y = x +_f y"
  by (simp add: lift2_def plussub_def split: err.split)


subsection ‹sup›

lemma Err_sup_Err [simp]:
  "Err +_(Err.sup f) x = Err"
  by (simp add: plussub_def Err.sup_def Err.lift2_def)

lemma Err_sup_Err2 [simp]:
  "x +_(Err.sup f) Err = Err"
  by (simp add: plussub_def Err.sup_def Err.lift2_def split: err.split)

lemma Err_sup_OK [simp]:
  "OK x +_(Err.sup f) OK y = OK(x +_f y)"
  by (simp add: plussub_def Err.sup_def Err.lift2_def)

lemma Err_sup_eq_OK_conv [iff]:
  "(Err.sup f ex ey = OK z) = (x y. ex = OK x & ey = OK y & f x y = z)"
apply (unfold Err.sup_def lift2_def plussub_def)
apply (rule iffI)
 apply (simp split: err.split_asm)
apply clarify
apply simp
done

lemma Err_sup_eq_Err [iff]:
  "(Err.sup f ex ey = Err) = (ex=Err | ey=Err)"
apply (unfold Err.sup_def lift2_def plussub_def)
apply (simp split: err.split)
done 

subsection ‹semilat (err A) (le r) f›

lemma semilat_le_err_Err_plus [simp]:
  " x  err A; semilat(err A, le r, f)   Err +_f x = Err"
  by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
                   Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1])

lemma semilat_le_err_plus_Err [simp]:
  " x  err A; semilat(err A, le r, f)   x +_f Err = Err"
  by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
                   Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1])

lemma semilat_le_err_OK1:
  " x  A; y  A; semilat(err A, le r, f); OK x +_f OK y = OK z  
   x <=_r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub1 [OF Semilat.intro])
done

lemma semilat_le_err_OK2:
  " x  A; y  A; semilat(err A, le r, f); OK x +_f OK y = OK z  
   y <=_r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub2 [OF Semilat.intro])
done

lemma eq_order_le:
  " x=y; order r   x <=_r y"
apply (unfold Semilat.order_def)
apply blast
done

lemma OK_plus_OK_eq_Err_conv [simp]:
  assumes "x  A" and "y  A" and "semilat(err A, le r, fe)"
  shows "((OK x) +_fe (OK y) = Err) = (¬(zA. x <=_r z & y <=_r z))"
proof -
  have plus_le_conv3: "A x y z f r. 
     semilat (A,r,f); x +_f y <=_r z; x  A; y  A; z  A  
     x <=_r z  y <=_r z"
    by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1])
  from assms show ?thesis
  apply (rule_tac iffI)
   apply clarify
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"])
        apply assumption
       apply assumption
      apply simp
     apply simp
    apply simp
   apply simp
  apply (case_tac "(OK x) +_fe (OK y)")
   apply assumption
  apply (rename_tac z)
  apply (subgoal_tac "OK z  err A")
  apply (drule eq_order_le)
    apply (erule Semilat.orderI [OF Semilat.intro])
   apply (blast dest: plus_le_conv3) 
  apply (erule subst)
  apply (blast intro: Semilat.closedI [OF Semilat.intro] closedD)
  done 
qed

subsection ‹semilat (err (Union AS))›

(* FIXME? *)
lemma all_bex_swap_lemma [iff]:
  "(x. (yA. x = f y)  P x) = (yA. P(f y))"
  by blast

lemma closed_err_Union_lift2I: 
  " AAS. closed (err A) (lift2 f); AS  {}; 
      AAS. BAS. AB  (aA. bB. a +_f b = Err)  
   closed (err (AS)) (lift2 f)"
apply (unfold closed_def err_def)
apply simp
apply clarify
apply simp
apply fast
done 

text ‹
  If termAS = {} the thm collapses to
  proporder r & closed {Err} f & Err +_f Err = Err
  which may not hold 
›
lemma err_semilat_UnionI:
  " AAS. err_semilat(A, r, f); AS  {}; 
      AAS. BAS. AB  (aA. bB. ¬ a <=_r b & a +_f b = Err)  
   err_semilat (AS, r, f)"
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
 apply blast
apply (simp add: err_def)
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply clarify
apply (rename_tac A ya yb B yd z C c a b)
apply (case_tac "A = B")
 apply (case_tac "A = C")
  apply simp
 apply (rotate_tac -1)
 apply simp
apply (rotate_tac -1)
apply (case_tac "B = C")
 apply simp
apply (rotate_tac -1)
apply simp
done 

end