Theory RBT_Set2
section ‹Alternative Deletion in Red-Black Trees›
theory RBT_Set2
imports RBT_Set
begin
text ‹This is a conceptually simpler version of deletion. Instead of the tricky ‹join›
function this version follows the standard approach of replacing the deleted element
(in function ‹del›) by the minimal element in its right subtree.›
fun split_min :: "'a rbt ⇒ 'a × 'a rbt" where
"split_min (Node l (a, _) r) =
(if l = Leaf then (a,r)
else let (x,l') = split_min l
in (x, if color l = Black then baldL l' a r else R l' a r))"
fun del :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"del x Leaf = Leaf" |
"del x (Node l (a, _) r) =
(case cmp x a of
LT ⇒ let l' = del x l in if l ≠ Leaf ∧ color l = Black
then baldL l' a r else R l' a r |
GT ⇒ let r' = del x r in if r ≠ Leaf ∧ color r = Black
then baldR l a r' else R l a r' |
EQ ⇒ if r = Leaf then l else let (a',r') = split_min r in
if color r = Black then baldR l a' r' else R l a' r')"
text ‹The first two ‹let›s speed up the automatic proof of ‹inv_del› below.›
definition delete :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"delete x t = paint Black (del x t)"
subsection "Functional Correctness Proofs"
declare Let_def[simp]
lemma split_minD:
"split_min t = (x,t') ⟹ t ≠ Leaf ⟹ x # inorder t' = inorder t"
by(induction t arbitrary: t' rule: split_min.induct)
(auto simp: inorder_baldL sorted_lems split: prod.splits if_splits)
lemma inorder_del:
"sorted(inorder t) ⟹ inorder(del x t) = del_list x (inorder t)"
by(induction x t rule: del.induct)
(auto simp: del_list_simps inorder_baldL inorder_baldR split_minD split: prod.splits)
lemma inorder_delete:
"sorted(inorder t) ⟹ inorder(delete x t) = del_list x (inorder t)"
by (auto simp: delete_def inorder_del inorder_paint)
subsection ‹Structural invariants›
lemma neq_Red[simp]: "(c ≠ Red) = (c = Black)"
by (cases c) auto
subsubsection ‹Deletion›
lemma inv_split_min: "⟦ split_min t = (x,t'); t ≠ Leaf; invh t; invc t ⟧ ⟹
invh t' ∧
(color t = Red ⟶ bheight t' = bheight t ∧ invc t') ∧
(color t = Black ⟶ bheight t' = bheight t - 1 ∧ invc2 t')"
apply(induction t arbitrary: x t' rule: split_min.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: neq_LeafD
split: if_splits prod.splits)
done
text ‹An automatic proof. It is quite brittle, e.g. inlining the ‹let›s in @{const del} breaks it.›
lemma inv_del: "⟦ invh t; invc t ⟧ ⟹
invh (del x t) ∧
(color t = Red ⟶ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black ⟶ bheight (del x t) = bheight t - 1 ∧ invc2 (del x t))"
apply(induction x t rule: del.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: inv_split_min dest: neq_LeafD
split!: prod.splits if_splits)
done
text‹A structured proof where one can see what is used in each case.›
lemma inv_del2: "⟦ invh t; invc t ⟧ ⟹
invh (del x t) ∧
(color t = Red ⟶ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black ⟶ bheight (del x t) = bheight t - 1 ∧ invc2 (del x t))"
proof(induction x t rule: del.induct)
case (1 x)
then show ?case by simp
next
case (2 x l a c r)
note if_split[split del]
show ?case
proof cases
assume "x < a"
show ?thesis
proof cases
assume "l = Leaf" thus ?thesis using ‹x < a› "2.prems" by(auto)
next
assume l: "l ≠ Leaf"
show ?thesis
proof (cases "color l")
assume *: "color l = Black"
hence "bheight l > 0" using l neq_LeafD[of l] by auto
thus ?thesis using ‹x < a› "2.IH"(1) "2.prems" inv_baldL[of "del x l"] * l by(auto)
next
assume "color l = Red"
thus ?thesis using ‹x < a› "2.prems" "2.IH"(1) by(auto)
qed
qed
next
assume "¬ x < a"
show ?thesis
proof cases
assume "x > a"
show ?thesis using ‹a < x› "2.IH"(2) "2.prems" neq_LeafD[of r] inv_baldR[of _ "del x r"]
by(auto split: if_split)
next
assume "¬ x > a"
show ?thesis using "2.prems" ‹¬ x < a› ‹¬ x > a›
by(auto simp: inv_baldR invc2I dest!: inv_split_min dest: neq_LeafD split: prod.split if_split)
qed
qed
qed
theorem rbt_delete: "rbt t ⟹ rbt (delete x t)"
by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)
text ‹Overall correctness:›
interpretation S: Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete = delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)
case 1 show ?case by (simp add: empty_def)
next
case 2 thus ?case by(simp add: isin_set_inorder)
next
case 3 thus ?case by(simp add: inorder_insert)
next
case 4 thus ?case by(simp add: inorder_delete)
next
case 5 thus ?case by (simp add: rbt_def empty_def)
next
case 6 thus ?case by (simp add: rbt_insert)
next
case 7 thus ?case by (simp add: rbt_delete)
qed
end