Theory RBT

(* Author: Tobias Nipkow *)

section ‹Red-Black Trees›

theory RBT
imports Tree2
begin

datatype color = Red | Black

type_synonym 'a rbt = "('a*color)tree"

abbreviation R where "R l a r  Node l (a, Red) r"
abbreviation B where "B l a r  Node l (a, Black) r"

fun baliL :: "'a rbt  'a  'a rbt  'a rbt" where
"baliL (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4)" |
"baliL (R t1 a (R t2 b t3)) c t4 = R (B t1 a t2) b (B t3 c t4)" |
"baliL t1 a t2 = B t1 a t2"

fun baliR :: "'a rbt  'a  'a rbt  'a rbt" where
"baliR t1 a (R t2 b (R t3 c t4)) = R (B t1 a t2) b (B t3 c t4)" |
"baliR t1 a (R (R t2 b t3) c t4) = R (B t1 a t2) b (B t3 c t4)" |
"baliR t1 a t2 = B t1 a t2"

fun paint :: "color  'a rbt  'a rbt" where
"paint c Leaf = Leaf" |
"paint c (Node l (a,_) r) = Node l (a,c) r"

fun baldL :: "'a rbt  'a  'a rbt  'a rbt" where
"baldL (R t1 a t2) b t3 = R (B t1 a t2) b t3" |
"baldL t1 a (B t2 b t3) = baliR t1 a (R t2 b t3)" |
"baldL t1 a (R (B t2 b t3) c t4) = R (B t1 a t2) b (baliR t3 c (paint Red t4))" |
"baldL t1 a t2 = R t1 a t2"

fun baldR :: "'a rbt  'a  'a rbt  'a rbt" where
"baldR t1 a (R t2 b t3) = R t1 a (B t2 b t3)" |
"baldR (B t1 a t2) b t3 = baliL (R t1 a t2) b t3" |
"baldR (R t1 a (B t2 b t3)) c t4 = R (baliL (paint Red t1) a t2) b (B t3 c t4)" |
"baldR t1 a t2 = R t1 a t2"

fun join :: "'a rbt  'a rbt  'a rbt" where
"join Leaf t = t" |
"join t Leaf = t" |
"join (R t1 a t2) (R t3 c t4) =
  (case join t2 t3 of
     R u2 b u3  (R (R t1 a u2) b (R u3 c t4)) |
     t23  R t1 a (R t23 c t4))" |
"join (B t1 a t2) (B t3 c t4) =
  (case join t2 t3 of
     R u2 b u3  R (B t1 a u2) b (B u3 c t4) |
     t23  baldL t1 a (B t23 c t4))" |
"join t1 (R t2 a t3) = R (join t1 t2) a t3" |
"join (R t1 a t2) t3 = R t1 a (join t2 t3)" 

end