Theory Yahalom
section‹The Yahalom Protocol›
theory Yahalom imports Public begin
text‹From page 257 of
Burrows, Abadi and Needham (1989). A Logic of Authentication.
Proc. Royal Soc. 426
This theory has the prototypical example of a secrecy relation, KeyCryptNonce.
›
inductive_set yahalom :: "event list set"
where
Nil: "[] ∈ yahalom"
| Fake: "⟦evsf ∈ yahalom; X ∈ synth (analz (knows Spy evsf))⟧
⟹ Says Spy B X # evsf ∈ yahalom"
| Reception: "⟦evsr ∈ yahalom; Says A B X ∈ set evsr⟧
⟹ Gets B X # evsr ∈ yahalom"
| YM1: "⟦evs1 ∈ yahalom; Nonce NA ∉ used evs1⟧
⟹ Says A B ⦃Agent A, Nonce NA⦄ # evs1 ∈ yahalom"
| YM2: "⟦evs2 ∈ yahalom; Nonce NB ∉ used evs2;
Gets B ⦃Agent A, Nonce NA⦄ ∈ set evs2⟧
⟹ Says B Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
# evs2 ∈ yahalom"
| YM3: "⟦evs3 ∈ yahalom; Key KAB ∉ used evs3; KAB ∈ symKeys;
Gets Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
∈ set evs3⟧
⟹ Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key KAB, Nonce NA, Nonce NB⦄,
Crypt (shrK B) ⦃Agent A, Key KAB⦄⦄
# evs3 ∈ yahalom"
| YM4:
"⟦evs4 ∈ yahalom; A ≠ Server; K ∈ symKeys;
Gets A ⦃Crypt(shrK A) ⦃Agent B, Key K, Nonce NA, Nonce NB⦄, X⦄
∈ set evs4;
Says A B ⦃Agent A, Nonce NA⦄ ∈ set evs4⟧
⟹ Says A B ⦃X, Crypt K (Nonce NB)⦄ # evs4 ∈ yahalom"
| Oops: "⟦evso ∈ yahalom;
Says Server A ⦃Crypt (shrK A)
⦃Agent B, Key K, Nonce NA, Nonce NB⦄,
X⦄ ∈ set evso⟧
⟹ Notes Spy ⦃Nonce NA, Nonce NB, Key K⦄ # evso ∈ yahalom"
definition KeyWithNonce :: "[key, nat, event list] ⇒ bool" where
"KeyWithNonce K NB evs ==
∃A B na X.
Says Server A ⦃Crypt (shrK A) ⦃Agent B, Key K, na, Nonce NB⦄, X⦄
∈ set evs"
declare Says_imp_analz_Spy [dest]
declare parts.Body [dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
text‹A "possibility property": there are traces that reach the end›
lemma "⟦A ≠ Server; K ∈ symKeys; Key K ∉ used []⟧
⟹ ∃X NB. ∃evs ∈ yahalom.
Says A B ⦃X, Crypt K (Nonce NB)⦄ ∈ set evs"
apply (intro exI bexI)
apply (rule_tac [2] yahalom.Nil
[THEN yahalom.YM1, THEN yahalom.Reception,
THEN yahalom.YM2, THEN yahalom.Reception,
THEN yahalom.YM3, THEN yahalom.Reception,
THEN yahalom.YM4])
apply (possibility, simp add: used_Cons)
done
subsection‹Regularity Lemmas for Yahalom›
lemma Gets_imp_Says:
"⟦Gets B X ∈ set evs; evs ∈ yahalom⟧ ⟹ ∃A. Says A B X ∈ set evs"
by (erule rev_mp, erule yahalom.induct, auto)
text‹Must be proved separately for each protocol›
lemma Gets_imp_knows_Spy:
"⟦Gets B X ∈ set evs; evs ∈ yahalom⟧ ⟹ X ∈ knows Spy evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
lemmas Gets_imp_analz_Spy = Gets_imp_knows_Spy [THEN analz.Inj]
declare Gets_imp_analz_Spy [dest]
text‹Lets us treat YM4 using a similar argument as for the Fake case.›
lemma YM4_analz_knows_Spy:
"⟦Gets A ⦃Crypt (shrK A) Y, X⦄ ∈ set evs; evs ∈ yahalom⟧
⟹ X ∈ analz (knows Spy evs)"
by blast
lemmas YM4_parts_knows_Spy =
YM4_analz_knows_Spy [THEN analz_into_parts]
text‹For Oops›
lemma YM4_Key_parts_knows_Spy:
"Says Server A ⦃Crypt (shrK A) ⦃B,K,NA,NB⦄, X⦄ ∈ set evs
⟹ K ∈ parts (knows Spy evs)"
by (metis parts.Body parts.Fst parts.Snd Says_imp_knows_Spy parts.Inj)
text‹Theorems of the form \<^term>‹X ∉ parts (knows Spy evs)› imply
that NOBODY sends messages containing X!›
text‹Spy never sees a good agent's shared key!›
lemma Spy_see_shrK [simp]:
"evs ∈ yahalom ⟹ (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)"
by (erule yahalom.induct, force,
drule_tac [6] YM4_parts_knows_Spy, simp_all, blast+)
lemma Spy_analz_shrK [simp]:
"evs ∈ yahalom ⟹ (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)"
by auto
lemma Spy_see_shrK_D [dest!]:
"⟦Key (shrK A) ∈ parts (knows Spy evs); evs ∈ yahalom⟧ ⟹ A ∈ bad"
by (blast dest: Spy_see_shrK)
text‹Nobody can have used non-existent keys!
Needed to apply ‹analz_insert_Key››
lemma new_keys_not_used [simp]:
"⟦Key K ∉ used evs; K ∈ symKeys; evs ∈ yahalom⟧
⟹ K ∉ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)
txt‹Fake›
apply (force dest!: keysFor_parts_insert, auto)
done
text‹Earlier, all protocol proofs declared this theorem.
But only a few proofs need it, e.g. Yahalom and Kerberos IV.›
lemma new_keys_not_analzd:
"⟦K ∈ symKeys; evs ∈ yahalom; Key K ∉ used evs⟧
⟹ K ∉ keysFor (analz (knows Spy evs))"
by (blast dest: new_keys_not_used intro: keysFor_mono [THEN subsetD])
text‹Describes the form of K when the Server sends this message. Useful for
Oops as well as main secrecy property.›
lemma Says_Server_not_range [simp]:
"⟦Says Server A ⦃Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄, X⦄
∈ set evs; evs ∈ yahalom⟧
⟹ K ∉ range shrK"
by (erule rev_mp, erule yahalom.induct, simp_all)
subsection‹Secrecy Theorems›
text‹Session keys are not used to encrypt other session keys›
lemma analz_image_freshK [rule_format]:
"evs ∈ yahalom ⟹
∀K KK. KK ⊆ - (range shrK) ⟶
(Key K ∈ analz (Key`KK ∪ (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"
apply (erule yahalom.induct,
drule_tac [7] YM4_analz_knows_Spy, analz_freshK, spy_analz, blast)
apply (simp only: Says_Server_not_range analz_image_freshK_simps)
apply safe
done
lemma analz_insert_freshK:
"⟦evs ∈ yahalom; KAB ∉ range shrK⟧ ⟹
(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)
text‹The Key K uniquely identifies the Server's message.›
lemma unique_session_keys:
"⟦Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄, X⦄ ∈ set evs;
Says Server A'
⦃Crypt (shrK A') ⦃Agent B', Key K, na', nb'⦄, X'⦄ ∈ set evs;
evs ∈ yahalom⟧
⟹ A=A' ∧ B=B' ∧ na=na' ∧ nb=nb'"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, simp_all)
txt‹YM3, by freshness, and YM4›
apply blast+
done
text‹Crucial secrecy property: Spy does not see the keys sent in msg YM3›
lemma secrecy_lemma:
"⟦A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs ⟶
Notes Spy ⦃na, nb, Key K⦄ ∉ set evs ⟶
Key K ∉ analz (knows Spy evs)"
apply (erule yahalom.induct, force,
drule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: pushes analz_insert_eq analz_insert_freshK)
subgoal by spy_analz
subgoal by blast
subgoal by (blast dest: unique_session_keys)
done
text‹Final version›
lemma Spy_not_see_encrypted_key:
"⟦Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs;
Notes Spy ⦃na, nb, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Key K ∉ analz (knows Spy evs)"
by (blast dest: secrecy_lemma)
subsubsection‹Security Guarantee for A upon receiving YM3›
text‹If the encrypted message appears then it originated with the Server›
lemma A_trusts_YM3:
"⟦Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄ ∈ parts (knows Spy evs);
A ∉ bad; evs ∈ yahalom⟧
⟹ Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)
txt‹Fake, YM3›
apply blast+
done
text‹The obvious combination of ‹A_trusts_YM3› with
‹Spy_not_see_encrypted_key››
lemma A_gets_good_key:
"⟦Crypt (shrK A) ⦃Agent B, Key K, na, nb⦄ ∈ parts (knows Spy evs);
Notes Spy ⦃na, nb, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Key K ∉ analz (knows Spy evs)"
by (metis A_trusts_YM3 secrecy_lemma)
subsubsection‹Security Guarantees for B upon receiving YM4›
text‹B knows, by the first part of A's message, that the Server distributed
the key for A and B. But this part says nothing about nonces.›
lemma B_trusts_YM4_shrK:
"⟦Crypt (shrK B) ⦃Agent A, Key K⦄ ∈ parts (knows Spy evs);
B ∉ bad; evs ∈ yahalom⟧
⟹ ∃NA NB. Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K,
Nonce NA, Nonce NB⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs"
apply (erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)
txt‹Fake, YM3›
apply blast+
done
text‹B knows, by the second part of A's message, that the Server
distributed the key quoting nonce NB. This part says nothing about
agent names. Secrecy of NB is crucial. Note that \<^term>‹Nonce NB
∉ analz(knows Spy evs)› must be the FIRST antecedent of the
induction formula.›
lemma B_trusts_YM4_newK [rule_format]:
"⟦Crypt K (Nonce NB) ∈ parts (knows Spy evs);
Nonce NB ∉ analz (knows Spy evs); evs ∈ yahalom⟧
⟹ ∃A B NA. Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, Nonce NA, Nonce NB⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
subgoal by blast
subgoal by blast
txt‹YM4. A is uncompromised because NB is secure
A's certificate guarantees the existence of the Server message›
apply (blast dest!: Gets_imp_Says Crypt_Spy_analz_bad
dest: Says_imp_spies
parts.Inj [THEN parts.Fst, THEN A_trusts_YM3])
done
subsubsection‹Towards proving secrecy of Nonce NB›
text‹Lemmas about the predicate KeyWithNonce›
lemma KeyWithNonceI:
"Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K, na, Nonce NB⦄, X⦄
∈ set evs ⟹ KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by blast
lemma KeyWithNonce_Says [simp]:
"KeyWithNonce K NB (Says S A X # evs) =
(Server = S ∧
(∃B n X'. X = ⦃Crypt (shrK A) ⦃Agent B, Key K, n, Nonce NB⦄, X'⦄)
| KeyWithNonce K NB evs)"
by (simp add: KeyWithNonce_def, blast)
lemma KeyWithNonce_Notes [simp]:
"KeyWithNonce K NB (Notes A X # evs) = KeyWithNonce K NB evs"
by (simp add: KeyWithNonce_def)
lemma KeyWithNonce_Gets [simp]:
"KeyWithNonce K NB (Gets A X # evs) = KeyWithNonce K NB evs"
by (simp add: KeyWithNonce_def)
text‹A fresh key cannot be associated with any nonce
(with respect to a given trace).›
lemma fresh_not_KeyWithNonce:
"Key K ∉ used evs ⟹ ¬ KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by blast
text‹The Server message associates K with NB' and therefore not with any
other nonce NB.›
lemma Says_Server_KeyWithNonce:
"⟦Says Server A ⦃Crypt (shrK A) ⦃Agent B, Key K, na, Nonce NB'⦄, X⦄
∈ set evs;
NB ≠ NB'; evs ∈ yahalom⟧
⟹ ¬ KeyWithNonce K NB evs"
unfolding KeyWithNonce_def by (blast dest: unique_session_keys)
text‹The only nonces that can be found with the help of session keys are
those distributed as nonce NB by the Server. The form of the theorem
recalls ‹analz_image_freshK›, but it is much more complicated.›
text‹As with ‹analz_image_freshK›, we take some pains to express the
property as a logical equivalence so that the simplifier can apply it.›
lemma Nonce_secrecy_lemma:
"P ⟶ (X ∈ analz (G ∪ H)) ⟶ (X ∈ analz H) ⟹
P ⟶ (X ∈ analz (G ∪ H)) = (X ∈ analz H)"
by (blast intro: analz_mono [THEN subsetD])
lemma Nonce_secrecy:
"evs ∈ yahalom ⟹
(∀KK. KK ⊆ - (range shrK) ⟶
(∀K ∈ KK. K ∈ symKeys ⟶ ¬ KeyWithNonce K NB evs) ⟶
(Nonce NB ∈ analz (Key`KK ∪ (knows Spy evs))) =
(Nonce NB ∈ analz (knows Spy evs)))"
apply (erule yahalom.induct,
frule_tac [7] YM4_analz_knows_Spy)
apply (safe del: allI impI intro!: Nonce_secrecy_lemma [THEN impI, THEN allI])
apply (simp_all del: image_insert image_Un
add: analz_image_freshK_simps split_ifs
all_conj_distrib ball_conj_distrib
analz_image_freshK fresh_not_KeyWithNonce
imp_disj_not1
Says_Server_KeyWithNonce)
txt‹For Oops, simplification proves \<^prop>‹NBa≠NB›. By
\<^term>‹Says_Server_KeyWithNonce›, we get \<^prop>‹¬ KeyWithNonce K NB
evs›; then simplification can apply the induction hypothesis with
\<^term>‹KK = {K}›.›
subgoal by spy_analz
subgoal by blast
subgoal by blast
subgoal
by (metis A_trusts_YM3 Gets_imp_analz_Spy Gets_imp_knows_Spy KeyWithNonce_def
Spy_analz_shrK analz.Fst analz.Snd analz_shrK_Decrypt parts.Fst parts.Inj)
done
text‹Version required below: if NB can be decrypted using a session key then
it was distributed with that key. The more general form above is required
for the induction to carry through.›
lemma single_Nonce_secrecy:
"⟦Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key KAB, na, Nonce NB'⦄, X⦄
∈ set evs;
NB ≠ NB'; KAB ∉ range shrK; evs ∈ yahalom⟧
⟹ (Nonce NB ∈ analz (insert (Key KAB) (knows Spy evs))) =
(Nonce NB ∈ analz (knows Spy evs))"
by (simp_all del: image_insert image_Un imp_disjL
add: analz_image_freshK_simps split_ifs
Nonce_secrecy Says_Server_KeyWithNonce)
subsubsection‹The Nonce NB uniquely identifies B's message.›
lemma unique_NB:
"⟦Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄ ∈ parts (knows Spy evs);
Crypt (shrK B') ⦃Agent A', Nonce NA', nb⦄ ∈ parts (knows Spy evs);
evs ∈ yahalom; B ∉ bad; B' ∉ bad⟧
⟹ NA' = NA ∧ A' = A ∧ B' = B"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)
txt‹Fake, and YM2 by freshness›
apply blast+
done
text‹Variant useful for proving secrecy of NB. Because nb is assumed to be
secret, we no longer must assume B, B' not bad.›
lemma Says_unique_NB:
"⟦Says C S ⦃X, Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄⦄
∈ set evs;
Gets S' ⦃X', Crypt (shrK B') ⦃Agent A', Nonce NA', nb⦄⦄
∈ set evs;
nb ∉ analz (knows Spy evs); evs ∈ yahalom⟧
⟹ NA' = NA ∧ A' = A ∧ B' = B"
by (blast dest!: Gets_imp_Says Crypt_Spy_analz_bad
dest: Says_imp_spies unique_NB parts.Inj analz.Inj)
subsubsection‹A nonce value is never used both as NA and as NB›
lemma no_nonce_YM1_YM2:
"⟦Crypt (shrK B') ⦃Agent A', Nonce NB, nb'⦄ ∈ parts(knows Spy evs);
Nonce NB ∉ analz (knows Spy evs); evs ∈ yahalom⟧
⟹ Crypt (shrK B) ⦃Agent A, na, Nonce NB⦄ ∉ parts(knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
txt‹Fake, YM2›
apply blast+
done
text‹The Server sends YM3 only in response to YM2.›
lemma Says_Server_imp_YM2:
"⟦Says Server A ⦃Crypt (shrK A) ⦃Agent B, k, na, nb⦄, X⦄ ∈ set evs;
evs ∈ yahalom⟧
⟹ Gets Server ⦃Agent B, Crypt (shrK B) ⦃Agent A, na, nb⦄⦄
∈ set evs"
by (erule rev_mp, erule yahalom.induct, auto)
text‹A vital theorem for B, that nonce NB remains secure from the Spy.›
theorem Spy_not_see_NB :
"⟦Says B Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
∈ set evs;
(∀k. Notes Spy ⦃Nonce NA, Nonce NB, k⦄ ∉ set evs);
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Nonce NB ∉ analz (knows Spy evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule yahalom.induct, force,
frule_tac [6] YM4_analz_knows_Spy)
apply (simp_all add: split_ifs pushes new_keys_not_analzd analz_insert_eq
analz_insert_freshK)
subgoal by spy_analz
subgoal by blast
subgoal by blast
subgoal
by (blast dest!: no_nonce_YM1_YM2 dest: Gets_imp_Says Says_unique_NB)
subgoal
apply clarify
apply (blast dest!: Says_unique_NB analz_shrK_Decrypt
parts.Inj [THEN parts.Fst, THEN A_trusts_YM3]
dest: Gets_imp_Says Says_imp_spies Says_Server_imp_YM2
Spy_not_see_encrypted_key)
done
subgoal
apply clarsimp
apply (metis Says_Server_imp_YM2 Gets_imp_Says Says_Server_not_range Says_unique_NB no_nonce_YM1_YM2 parts.Snd single_Nonce_secrecy spies_partsEs(1))
done
done
text‹B's session key guarantee from YM4. The two certificates contribute to a
single conclusion about the Server's message. Note that the "Notes Spy"
assumption must quantify over ‹∀› POSSIBLE keys instead of our particular K.
If this run is broken and the spy substitutes a certificate containing an
old key, B has no means of telling.›
lemma B_trusts_YM4:
"⟦Gets B ⦃Crypt (shrK B) ⦃Agent A, Key K⦄,
Crypt K (Nonce NB)⦄ ∈ set evs;
Says B Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
∈ set evs;
∀k. Notes Spy ⦃Nonce NA, Nonce NB, k⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Says Server A
⦃Crypt (shrK A) ⦃Agent B, Key K,
Nonce NA, Nonce NB⦄,
Crypt (shrK B) ⦃Agent A, Key K⦄⦄
∈ set evs"
by (blast dest: Spy_not_see_NB Says_unique_NB
Says_Server_imp_YM2 B_trusts_YM4_newK)
text‹The obvious combination of ‹B_trusts_YM4› with
‹Spy_not_see_encrypted_key››
lemma B_gets_good_key:
"⟦Gets B ⦃Crypt (shrK B) ⦃Agent A, Key K⦄,
Crypt K (Nonce NB)⦄ ∈ set evs;
Says B Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
∈ set evs;
∀k. Notes Spy ⦃Nonce NA, Nonce NB, k⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Key K ∉ analz (knows Spy evs)"
by (metis B_trusts_YM4 Spy_not_see_encrypted_key)
subsection‹Authenticating B to A›
text‹The encryption in message YM2 tells us it cannot be faked.›
lemma B_Said_YM2 [rule_format]:
"⟦Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄ ∈ parts (knows Spy evs);
evs ∈ yahalom⟧
⟹ B ∉ bad ⟶
Says B Server ⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄⦄
∈ set evs"
apply (erule rev_mp, erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy, simp_all)
txt‹Fake›
apply blast
done
text‹If the server sends YM3 then B sent YM2›
lemma YM3_auth_B_to_A_lemma:
"⟦Says Server A ⦃Crypt (shrK A) ⦃Agent B, Key K, Nonce NA, nb⦄, X⦄
∈ set evs; evs ∈ yahalom⟧
⟹ B ∉ bad ⟶
Says B Server ⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄⦄
∈ set evs"
apply (erule rev_mp, erule yahalom.induct, simp_all)
txt‹YM3, YM4›
apply (blast dest!: B_Said_YM2)+
done
text‹If A receives YM3 then B has used nonce NA (and therefore is alive)›
theorem YM3_auth_B_to_A:
"⟦Gets A ⦃Crypt (shrK A) ⦃Agent B, Key K, Nonce NA, nb⦄, X⦄
∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ Says B Server ⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, nb⦄⦄
∈ set evs"
by (metis A_trusts_YM3 Gets_imp_analz_Spy YM3_auth_B_to_A_lemma analz.Fst
not_parts_not_analz)
subsection‹Authenticating A to B using the certificate
\<^term>‹Crypt K (Nonce NB)››
text‹Assuming the session key is secure, if both certificates are present then
A has said NB. We can't be sure about the rest of A's message, but only
NB matters for freshness.›
theorem A_Said_YM3_lemma [rule_format]:
"evs ∈ yahalom
⟹ Key K ∉ analz (knows Spy evs) ⟶
Crypt K (Nonce NB) ∈ parts (knows Spy evs) ⟶
Crypt (shrK B) ⦃Agent A, Key K⦄ ∈ parts (knows Spy evs) ⟶
B ∉ bad ⟶
(∃X. Says A B ⦃X, Crypt K (Nonce NB)⦄ ∈ set evs)"
apply (erule yahalom.induct, force,
frule_tac [6] YM4_parts_knows_Spy)
apply (analz_mono_contra, simp_all)
subgoal by blast
subgoal
by (force dest!: Crypt_imp_keysFor)
subgoal
by (blast dest!: Gets_imp_Says A_trusts_YM3 B_trusts_YM4_shrK Crypt_Spy_analz_bad
dest: Says_imp_knows_Spy [THEN parts.Inj] unique_session_keys)
done
text‹If B receives YM4 then A has used nonce NB (and therefore is alive).
Moreover, A associates K with NB (thus is talking about the same run).
Other premises guarantee secrecy of K.›
theorem YM4_imp_A_Said_YM3 [rule_format]:
"⟦Gets B ⦃Crypt (shrK B) ⦃Agent A, Key K⦄,
Crypt K (Nonce NB)⦄ ∈ set evs;
Says B Server
⦃Agent B, Crypt (shrK B) ⦃Agent A, Nonce NA, Nonce NB⦄⦄
∈ set evs;
(∀NA k. Notes Spy ⦃Nonce NA, Nonce NB, k⦄ ∉ set evs);
A ∉ bad; B ∉ bad; evs ∈ yahalom⟧
⟹ ∃X. Says A B ⦃X, Crypt K (Nonce NB)⦄ ∈ set evs"
by (metis A_Said_YM3_lemma B_gets_good_key Gets_imp_analz_Spy YM4_parts_knows_Spy analz.Fst not_parts_not_analz)
end