Theory Shared
theory Shared
imports Event All_Symmetric
begin
consts
shrK :: "agent ⇒ key"
specification (shrK)
inj_shrK: "inj shrK"
apply (rule exI [of _ "case_agent 0 (λn. n + 2) 1"])
apply (simp add: inj_on_def split: agent.split)
done
text‹Server knows all long-term keys; other agents know only their own›
overloading
initState ≡ initState
begin
primrec initState where
initState_Server: "initState Server = Key ` range shrK"
| initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}"
| initState_Spy: "initState Spy = Key`shrK`bad"
end
subsection‹Basic properties of shrK›
lemmas shrK_injective = inj_shrK [THEN inj_eq]
declare shrK_injective [iff]
lemma invKey_K [simp]: "invKey K = K"
apply (insert isSym_keys)
apply (simp add: symKeys_def)
done
lemma analz_Decrypt' [dest]:
"⟦Crypt K X ∈ analz H; Key K ∈ analz H⟧ ⟹ X ∈ analz H"
by auto
text‹Now cancel the ‹dest› attribute given to
‹analz.Decrypt› in its declaration.›
declare analz.Decrypt [rule del]
text‹Rewrites should not refer to \<^term>‹initState(Friend i)› because
that expression is not in normal form.›
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
unfolding keysFor_def
apply (induct_tac "C", auto)
done
lemma keysFor_parts_insert:
"⟦K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H)⟧
⟹ K ∈ keysFor (parts (G ∪ H)) | Key K ∈ parts H"
by (metis invKey_K keysFor_parts_insert)
lemma Crypt_imp_keysFor: "Crypt K X ∈ H ⟹ K ∈ keysFor H"
by (metis Crypt_imp_invKey_keysFor invKey_K)
subsection‹Function "knows"›
lemma Spy_knows_Spy_bad [intro!]: "A ∈ bad ⟹ Key (shrK A) ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) add: imageI knows_Cons split: event.split)
done
lemma Crypt_Spy_analz_bad: "⟦Crypt (shrK A) X ∈ analz (knows Spy evs); A ∈ bad⟧
⟹ X ∈ analz (knows Spy evs)"
by (metis Spy_knows_Spy_bad analz.Inj analz_Decrypt')
lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
by (induct_tac "A", auto)
lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
by (rule initState_into_used, blast)
lemma Key_not_used [simp]: "Key K ∉ used evs ⟹ K ∉ range shrK"
by blast
lemma shrK_neq [simp]: "Key K ∉ used evs ⟹ shrK B ≠ K"
by blast
lemmas shrK_sym_neq = shrK_neq [THEN not_sym]
declare shrK_sym_neq [simp]
subsection‹Fresh nonces›
lemma Nonce_notin_initState [iff]: "Nonce N ∉ parts (initState B)"
by (induct_tac "B", auto)
lemma Nonce_notin_used_empty [simp]: "Nonce N ∉ used []"
by (simp add: used_Nil)
subsection‹Supply fresh nonces for possibility theorems.›
lemma Nonce_supply_lemma: "∃N. ∀n. N ≤ n ⟶ Nonce n ∉ used evs"
apply (induct_tac "evs")
apply (rule_tac x = 0 in exI)
apply (simp_all (no_asm_simp) add: used_Cons split: event.split)
apply (metis le_sup_iff msg_Nonce_supply)
done
lemma Nonce_supply1: "∃N. Nonce N ∉ used evs"
by (metis Nonce_supply_lemma order_eq_iff)
lemma Nonce_supply2: "∃N N'. Nonce N ∉ used evs ∧ Nonce N' ∉ used evs' ∧ N ≠ N'"
apply (cut_tac evs = evs in Nonce_supply_lemma)
apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify)
apply (metis Suc_n_not_le_n nat_le_linear)
done
lemma Nonce_supply3: "∃N N' N''. Nonce N ∉ used evs ∧ Nonce N' ∉ used evs' ∧
Nonce N'' ∉ used evs'' ∧ N ≠ N' ∧ N' ≠ N'' ∧ N ≠ N''"
apply (cut_tac evs = evs in Nonce_supply_lemma)
apply (cut_tac evs = "evs'" in Nonce_supply_lemma)
apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify)
apply (rule_tac x = N in exI)
apply (rule_tac x = "Suc (N+Na)" in exI)
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)
done
lemma Nonce_supply: "Nonce (SOME N. Nonce N ∉ used evs) ∉ used evs"
apply (rule Nonce_supply_lemma [THEN exE])
apply (rule someI, blast)
done
text‹Unlike the corresponding property of nonces, we cannot prove
\<^term>‹finite KK ⟹ ∃K. K ∉ KK ∧ Key K ∉ used evs›.
We have infinitely many agents and there is nothing to stop their
long-term keys from exhausting all the natural numbers. Instead,
possibility theorems must assume the existence of a few keys.›
subsection‹Specialized Rewriting for Theorems About \<^term>‹analz› and Image›
lemma subset_Compl_range: "A ⊆ - (range shrK) ⟹ shrK x ∉ A"
by blast
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} ∪ H"
by blast
lemma insert_Key_image: "insert (Key K) (Key`KK ∪ C) = Key`(insert K KK) ∪ C"
by blast
lemmas analz_image_freshK_simps =
simp_thms mem_simps
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range
Key_not_used insert_Key_image Un_assoc [THEN sym]
lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key`nE ∪ H)) ⟶ (K ∈ nE | Key K ∈ analz H) ⟹
(Key K ∈ analz (Key`nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
subsection‹Tactics for possibility theorems›
ML
‹
structure Shared =
struct
fun possibility_tac ctxt =
(REPEAT
(ALLGOALS (simp_tac (ctxt
delsimps [@{thm used_Says}, @{thm used_Notes}, @{thm used_Gets}]
setSolver safe_solver))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE'
resolve_tac ctxt [refl, conjI, @{thm Nonce_supply}])))
fun basic_possibility_tac ctxt =
REPEAT
(ALLGOALS (asm_simp_tac (ctxt setSolver safe_solver))
THEN
REPEAT_FIRST (resolve_tac ctxt [refl, conjI]))
val analz_image_freshK_ss =
simpset_of
(\<^context> delsimps [image_insert, image_Un]
delsimps [@{thm imp_disjL}]
addsimps @{thms analz_image_freshK_simps})
end
›
lemma invKey_shrK_iff [iff]:
"(Key (invKey K) ∈ X) = (Key K ∈ X)"
by auto
method_setup analz_freshK = ‹
Scan.succeed (fn ctxt =>
(SIMPLE_METHOD
(EVERY [REPEAT_FIRST (resolve_tac ctxt [allI, ballI, impI]),
REPEAT_FIRST (resolve_tac ctxt @{thms analz_image_freshK_lemma}),
ALLGOALS (asm_simp_tac (put_simpset Shared.analz_image_freshK_ss ctxt))])))›
"for proving the Session Key Compromise theorem"
method_setup possibility = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.possibility_tac ctxt))›
"for proving possibility theorems"
method_setup basic_possibility = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD (Shared.basic_possibility_tac ctxt))›
"for proving possibility theorems"
lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
by (cases e) (auto simp: knows_Cons)
end