Theory NS_Public_Bad

(*  Title:      HOL/Auth/NS_Public_Bad.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge
*)

section‹The Needham-Schroeder Public-Key Protocol (Flawed)›

text ‹Flawed version, vulnerable to Lowe's attack.
From Burrows, Abadi and Needham.  A Logic of Authentication.
  Proc. Royal Soc. 426 (1989), p. 260›

theory NS_Public_Bad imports Public begin

inductive_set ns_public :: "event list set"
  where
   Nil:  "[]  ns_public" 
   ― ‹Initial trace is empty›
 | Fake: "evsf  ns_public;  X  synth (analz (spies evsf))
           Says Spy B X  # evsf  ns_public"
   ― ‹The spy can say almost anything.›
 | NS1:  "evs1  ns_public;  Nonce NA  used evs1
           Says A B (Crypt (pubEK B) Nonce NA, Agent A)
                # evs1    ns_public"
   ― ‹Alice initiates a protocol run, sending a nonce to Bob›
 | NS2:  "evs2  ns_public;  Nonce NB  used evs2;
           Says A' B (Crypt (pubEK B) Nonce NA, Agent A)  set evs2
           Says B A (Crypt (pubEK A) Nonce NA, Nonce NB)
                # evs2    ns_public"
   ― ‹Bob responds to Alice's message with a further nonce›
 | NS3:  "evs3  ns_public;
           Says A  B (Crypt (pubEK B) Nonce NA, Agent A)  set evs3;
           Says B' A (Crypt (pubEK A) Nonce NA, Nonce NB)  set evs3
           Says A B (Crypt (pubEK B) (Nonce NB)) # evs3  ns_public"
   ― ‹Alice proves her existence by sending @{term NB} back to Bob.›

declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]

text ‹A "possibility property": there are traces that reach the end›
lemma "NB. evs  ns_public. Says A B (Crypt (pubEK B) (Nonce NB))  set evs"
  apply (intro exI bexI)
   apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2, THEN ns_public.NS3])
  by possibility


subsection ‹Inductive proofs about @{term ns_public}

(** Theorems of the form X ∉ parts (spies evs) imply that NOBODY
    sends messages containing X! **)

text ‹Spy never sees another agent's private key! (unless it's bad at start)›
lemma Spy_see_priEK [simp]: 
  "evs  ns_public  (Key (priEK A)  parts (spies evs)) = (A  bad)"
  by (erule ns_public.induct, auto)

lemma Spy_analz_priEK [simp]: 
  "evs  ns_public  (Key (priEK A)  analz (spies evs)) = (A  bad)"
  by auto


subsection ‹Authenticity properties obtained from {term NS1}›

text ‹It is impossible to re-use a nonce in both {term NS1} and {term NS2}, provided the nonce
  is secret.  (Honest users generate fresh nonces.)›
lemma no_nonce_NS1_NS2: 
      "evs  ns_public;
        Crypt (pubEK C) NA', Nonce NA  parts (spies evs);
        Crypt (pubEK B) Nonce NA, Agent A  parts (spies evs)  
        Nonce NA  analz (spies evs)"
  by (induct rule: ns_public.induct) (auto intro: analz_insertI)


text ‹Unicity for {term NS1}: nonce {term NA} identifies agents {term A} and {term B}›
lemma unique_NA: 
  assumes NA: "Crypt(pubEK B)  Nonce NA, Agent A   parts(spies evs)"
              "Crypt(pubEK B') Nonce NA, Agent A'  parts(spies evs)"
              "Nonce NA  analz (spies evs)"
    and evs: "evs  ns_public"
  shows "A=A'  B=B'"
  using evs NA
  by (induction rule: ns_public.induct) (auto intro!: analz_insertI split: if_split_asm)


text ‹Secrecy: Spy does not see the nonce sent in msg {term NS1} if {term A} and {term B} are secure
  The major premise "Says A B ..." makes it a dest-rule, hence the given assumption order. ›
theorem Spy_not_see_NA: 
  assumes NA: "Says A B (Crypt(pubEK B) Nonce NA, Agent A)  set evs"
              "A  bad" "B  bad"
    and evs: "evs  ns_public"
  shows "Nonce NA  analz (spies evs)"
  using evs NA
proof (induction rule: ns_public.induct)
  case (Fake evsf X B)
  then show ?case
    by spy_analz
next
  case (NS2 evs2 NB A' B NA A)
  then show ?case
    by simp (metis Says_imp_analz_Spy analz_into_parts parts.simps unique_NA usedI)
next
  case (NS3 evs3 A B NA B' NB)
  then show ?case
    by simp (meson Says_imp_analz_Spy analz_into_parts no_nonce_NS1_NS2)
qed auto


text ‹Authentication for {term A}: if she receives message 2 and has used {term NA}
  to start a run, then {term B} has sent message 2.›
lemma A_trusts_NS2_lemma: 
    "evs  ns_public;            
      Crypt (pubEK A) Nonce NA, Nonce NB  parts (spies evs);
      Says A B (Crypt(pubEK B) Nonce NA, Agent A)  set evs;
      A  bad; B  bad
      Says B A (Crypt(pubEK A) Nonce NA, Nonce NB)  set evs"
  by (induct rule: ns_public.induct) (auto dest: Spy_not_see_NA unique_NA)

theorem A_trusts_NS2: 
     "Says A  B (Crypt(pubEK B) Nonce NA, Agent A)  set evs;   
       Says B' A (Crypt(pubEK A) Nonce NA, Nonce NB)  set evs;
       A  bad;  B  bad;  evs  ns_public                     
       Says B A (Crypt(pubEK A) Nonce NA, Nonce NB)  set evs"
  by (blast intro: A_trusts_NS2_lemma)


text ‹If the encrypted message appears then it originated with Alice in {term NS1}›
lemma B_trusts_NS1:
     "evs  ns_public;                                     
       Crypt (pubEK B) Nonce NA, Agent A  parts (spies evs);
       Nonce NA  analz (spies evs)
       Says A B (Crypt (pubEK B) Nonce NA, Agent A)  set evs"
  by (induct evs rule: ns_public.induct) (use analz_insertI in auto split: if_split_asm)


subsection ‹Authenticity properties obtained from {term NS2}›

text ‹Unicity for {term NS2}: nonce {term NB} identifies nonce {term NA} and agent {term A} 
  [proof closely follows that for @{thm [source] unique_NA}]›

lemma unique_NB [dest]: 
  assumes NB: "Crypt(pubEK A) Nonce NA, Nonce NB  parts(spies evs)"
              "Crypt(pubEK A') Nonce NA', Nonce NB  parts(spies evs)"
              "Nonce NB  analz (spies evs)"
    and evs: "evs  ns_public"
  shows "A=A'  NA=NA'"
  using evs NB 
  by (induction rule: ns_public.induct) (auto intro!: analz_insertI split: if_split_asm)


text ‹{term NB} remains secret \emph{provided} Alice never responds with round 3›
theorem Spy_not_see_NB [dest]:
  assumes NB: "Says B A (Crypt (pubEK A) Nonce NA, Nonce NB)  set evs"
              "C. Says A C (Crypt (pubEK C) (Nonce NB))  set evs"
              "A  bad" "B  bad"
    and evs: "evs  ns_public"
  shows "Nonce NB  analz (spies evs)"
  using evs NB evs
proof (induction rule: ns_public.induct)
  case Fake
  then show ?case by spy_analz
next
  case NS2
  then show ?case
    by (auto intro!: no_nonce_NS1_NS2)
qed auto


text ‹Authentication for {term B}: if he receives message 3 and has used {term NB}
  in message 2, then {term A} has sent message 3 (to somebody) ›
lemma B_trusts_NS3_lemma:
     "evs  ns_public; 
       Crypt (pubEK B) (Nonce NB)  parts (spies evs); 
       Says B A (Crypt (pubEK A) Nonce NA, Nonce NB)  set evs; 
       A  bad;  B  bad                    
       C. Says A C (Crypt (pubEK C) (Nonce NB))  set evs"
proof (induction rule: ns_public.induct)
  case (NS3 evs3 A B NA B' NB)
  then show ?case
    by simp (blast intro: no_nonce_NS1_NS2)
qed auto

theorem B_trusts_NS3:
     "Says B A  (Crypt (pubEK A) Nonce NA, Nonce NB)  set evs;
       Says A' B (Crypt (pubEK B) (Nonce NB))  set evs;             
       A  bad;  B  bad;  evs  ns_public                    
       C. Says A C (Crypt (pubEK C) (Nonce NB))  set evs"
  by (blast intro: B_trusts_NS3_lemma)


text ‹Can we strengthen the secrecy theorem @{thm[source]Spy_not_see_NB}?  NO›
lemma "evs  ns_public; 
        Says B A (Crypt (pubEK A) Nonce NA, Nonce NB)  set evs; 
        A  bad; B  bad            
        Nonce NB  analz (spies evs)"
apply (induction rule: ns_public.induct, simp_all, spy_analz)
(*{term NS1}: by freshness*)
apply blast
(*{term NS2}: by freshness and unicity of {term NB}*)
apply (blast intro: no_nonce_NS1_NS2)
(*{term NS3}: unicity of {term NB} identifies {term A} and {term NA}, but not {term B}*)
apply clarify
apply (frule_tac A' = A in 
       Says_imp_knows_Spy [THEN parts.Inj, THEN unique_NB], auto)
apply (rename_tac evs3 B' C)
txt‹This is the attack!
@{subgoals[display,indent=0,margin=65]}
oops

(*
THIS IS THE ATTACK!
Level 8
!!evs. ⟦A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
       ⟹ Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB⦄) ∈ set evs ⟶
           Nonce NB ∉ analz (spies evs)
 1. !!C B' evs3.
       ⟦A ∉ bad; B ∉ bad; evs3 ∈ ns_public
        Says A C (Crypt (pubEK C) ⦃Nonce NA, Agent A⦄) ∈ set evs3;
        Says B' A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB⦄) ∈ set evs3; 
        C ∈ bad;
        Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB⦄) ∈ set evs3;
        Nonce NB ∉ analz (spies evs3)⟧
       ⟹ False
*)

end