Theory Kerberos_BAN
section‹The Kerberos Protocol, BAN Version›
theory Kerberos_BAN imports Public begin
text‹From page 251 of
Burrows, Abadi and Needham (1989). A Logic of Authentication.
Proc. Royal Soc. 426
Confidentiality (secrecy) and authentication properties are also
given in a termporal version: strong guarantees in a little abstracted
- but very realistic - model.
›
consts
sesKlife :: nat
authlife :: nat
text‹The ticket should remain fresh for two journeys on the network at least›
specification (sesKlife)
sesKlife_LB [iff]: "2 ≤ sesKlife"
by blast
text‹The authenticator only for one journey›
specification (authlife)
authlife_LB [iff]: "authlife ≠ 0"
by blast
abbreviation
CT :: "event list ⇒ nat" where
"CT == length "
abbreviation
expiredK :: "[nat, event list] ⇒ bool" where
"expiredK T evs == sesKlife + T < CT evs"
abbreviation
expiredA :: "[nat, event list] ⇒ bool" where
"expiredA T evs == authlife + T < CT evs"
definition
Issues :: "[agent, agent, msg, event list] ⇒ bool"
("_ Issues _ with _ on _") where
"A Issues B with X on evs =
(∃Y. Says A B Y ∈ set evs ∧ X ∈ parts {Y} ∧
X ∉ parts (spies (takeWhile (λz. z ≠ Says A B Y) (rev evs))))"
definition
before :: "[event, event list] ⇒ event list" ("before _ on _")
where "before ev on evs = takeWhile (λz. z ≠ ev) (rev evs)"
definition
Unique :: "[event, event list] ⇒ bool" ("Unique _ on _")
where "Unique ev on evs = (ev ∉ set (tl (dropWhile (λz. z ≠ ev) evs)))"
inductive_set bankerberos :: "event list set"
where
Nil: "[] ∈ bankerberos"
| Fake: "⟦ evsf ∈ bankerberos; X ∈ synth (analz (spies evsf)) ⟧
⟹ Says Spy B X # evsf ∈ bankerberos"
| BK1: "⟦ evs1 ∈ bankerberos ⟧
⟹ Says A Server ⦃Agent A, Agent B⦄ # evs1
∈ bankerberos"
| BK2: "⟦ evs2 ∈ bankerberos; Key K ∉ used evs2; K ∈ symKeys;
Says A' Server ⦃Agent A, Agent B⦄ ∈ set evs2 ⟧
⟹ Says Server A
(Crypt (shrK A)
⦃Number (CT evs2), Agent B, Key K,
(Crypt (shrK B) ⦃Number (CT evs2), Agent A, Key K⦄)⦄)
# evs2 ∈ bankerberos"
| BK3: "⟦ evs3 ∈ bankerberos;
Says S A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, Ticket⦄)
∈ set evs3;
Says A Server ⦃Agent A, Agent B⦄ ∈ set evs3;
¬ expiredK Tk evs3 ⟧
⟹ Says A B ⦃Ticket, Crypt K ⦃Agent A, Number (CT evs3)⦄ ⦄
# evs3 ∈ bankerberos"
| BK4: "⟦ evs4 ∈ bankerberos;
Says A' B ⦃(Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄),
(Crypt K ⦃Agent A, Number Ta⦄) ⦄ ∈ set evs4;
¬ expiredK Tk evs4; ¬ expiredA Ta evs4 ⟧
⟹ Says B A (Crypt K (Number Ta)) # evs4
∈ bankerberos"
| Oops: "⟦ evso ∈ bankerberos;
Says Server A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, Ticket⦄)
∈ set evso;
expiredK Tk evso ⟧
⟹ Notes Spy ⦃Number Tk, Key K⦄ # evso ∈ bankerberos"
declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
text‹A "possibility property": there are traces that reach the end.›
lemma "⟦Key K ∉ used []; K ∈ symKeys⟧
⟹ ∃Timestamp. ∃evs ∈ bankerberos.
Says B A (Crypt K (Number Timestamp))
∈ set evs"
apply (cut_tac sesKlife_LB)
apply (intro exI bexI)
apply (rule_tac [2]
bankerberos.Nil [THEN bankerberos.BK1, THEN bankerberos.BK2,
THEN bankerberos.BK3, THEN bankerberos.BK4])
apply (possibility, simp_all (no_asm_simp) add: used_Cons)
done
subsection‹Lemmas for reasoning about predicate "Issues"›
lemma spies_Says_rev: "spies (evs @ [Says A B X]) = insert X (spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done
lemma spies_Gets_rev: "spies (evs @ [Gets A X]) = spies evs"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done
lemma spies_Notes_rev: "spies (evs @ [Notes A X]) =
(if A∈bad then insert X (spies evs) else spies evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
done
lemma spies_evs_rev: "spies evs = spies (rev evs)"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a")
apply (simp_all (no_asm_simp) add: spies_Says_rev spies_Gets_rev spies_Notes_rev)
done
lemmas parts_spies_evs_revD2 = spies_evs_rev [THEN equalityD2, THEN parts_mono]
lemma spies_takeWhile: "spies (takeWhile P evs) ⊆ spies evs"
apply (induct_tac "evs")
apply (rename_tac [2] a b)
apply (induct_tac [2] "a", auto)
txt‹Resembles ‹used_subset_append› in theory Event.›
done
lemmas parts_spies_takeWhile_mono = spies_takeWhile [THEN parts_mono]
text‹Lemmas for reasoning about predicate "before"›
lemma used_Says_rev: "used (evs @ [Says A B X]) = parts {X} ∪ (used evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_Notes_rev: "used (evs @ [Notes A X]) = parts {X} ∪ (used evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply auto
done
lemma used_evs_rev: "used evs = used (rev evs)"
apply (induct_tac "evs")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply (simp add: used_Says_rev)
apply (simp add: used_Gets_rev)
apply (simp add: used_Notes_rev)
done
lemma used_takeWhile_used [rule_format]:
"x ∈ used (takeWhile P X) ⟶ x ∈ used X"
apply (induct_tac "X")
apply simp
apply (rename_tac a b)
apply (induct_tac "a")
apply (simp_all add: used_Nil)
apply (blast dest!: initState_into_used)+
done
lemma set_evs_rev: "set evs = set (rev evs)"
apply auto
done
lemma takeWhile_void [rule_format]:
"x ∉ set evs ⟶ takeWhile (λz. z ≠ x) evs = evs"
apply auto
done
text‹Forwarding Lemma for reasoning about the encrypted portion of message BK3›
lemma BK3_msg_in_parts_spies:
"Says S A (Crypt KA ⦃Timestamp, B, K, X⦄) ∈ set evs
⟹ X ∈ parts (spies evs)"
apply blast
done
lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) ⦃Timestamp, B, K, X⦄) ∈ set evs
⟹ K ∈ parts (spies evs)"
apply blast
done
text‹Spy never sees another agent's shared key! (unless it's bad at start)›
lemma Spy_see_shrK [simp]:
"evs ∈ bankerberos ⟹ (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast+)
done
lemma Spy_analz_shrK [simp]:
"evs ∈ bankerberos ⟹ (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"
apply auto
done
lemma Spy_see_shrK_D [dest!]:
"⟦ Key (shrK A) ∈ parts (spies evs);
evs ∈ bankerberos ⟧ ⟹ A∈bad"
apply (blast dest: Spy_see_shrK)
done
lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D, dest!]
text‹Nobody can have used non-existent keys!›
lemma new_keys_not_used [simp]:
"⟦Key K ∉ used evs; K ∈ symKeys; evs ∈ bankerberos⟧
⟹ K ∉ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all)
txt‹Fake›
apply (force dest!: keysFor_parts_insert)
txt‹BK2, BK3, BK4›
apply (force dest!: analz_shrK_Decrypt)+
done
subsection‹Lemmas concerning the form of items passed in messages›
text‹Describes the form of K, X and K' when the Server sends this message.›
lemma Says_Server_message_form:
"⟦ Says Server A (Crypt K' ⦃Number Tk, Agent B, Key K, Ticket⦄)
∈ set evs; evs ∈ bankerberos ⟧
⟹ K' = shrK A ∧ K ∉ range shrK ∧
Ticket = (Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄) ∧
Key K ∉ used(before
Says Server A (Crypt K' ⦃Number Tk, Agent B, Key K, Ticket⦄)
on evs) ∧
Tk = CT(before
Says Server A (Crypt K' ⦃Number Tk, Agent B, Key K, Ticket⦄)
on evs)"
unfolding before_def
apply (erule rev_mp)
apply (erule bankerberos.induct, simp_all add: takeWhile_tail)
apply auto
apply (metis length_rev set_rev takeWhile_void used_evs_rev)+
done
text‹If the encrypted message appears then it originated with the Server
PROVIDED that A is NOT compromised!
This allows A to verify freshness of the session key.
›
lemma Kab_authentic:
"⟦ Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄
∈ parts (spies evs);
A ∉ bad; evs ∈ bankerberos ⟧
⟹ Says Server A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄)
∈ set evs"
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast)
done
text‹If the TICKET appears then it originated with the Server›
text‹FRESHNESS OF THE SESSION KEY to B›
lemma ticket_authentic:
"⟦ Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄ ∈ parts (spies evs);
B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says Server A
(Crypt (shrK A) ⦃Number Tk, Agent B, Key K,
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄⦄)
∈ set evs"
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all, blast)
done
text‹EITHER describes the form of X when the following message is sent,
OR reduces it to the Fake case.
Use ‹Says_Server_message_form› if applicable.›
lemma Says_S_message_form:
"⟦ Says S A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄)
∈ set evs;
evs ∈ bankerberos ⟧
⟹ (K ∉ range shrK ∧ X = (Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄))
| X ∈ analz (spies evs)"
apply (case_tac "A ∈ bad")
apply (force dest!: Says_imp_spies [THEN analz.Inj])
apply (frule Says_imp_spies [THEN parts.Inj])
apply (blast dest!: Kab_authentic Says_Server_message_form)
done
text‹Session keys are not used to encrypt other session keys›
lemma analz_image_freshK [rule_format (no_asm)]:
"evs ∈ bankerberos ⟹
∀K KK. KK ⊆ - (range shrK) ⟶
(Key K ∈ analz (Key`KK ∪ (spies evs))) =
(K ∈ KK | Key K ∈ analz (spies evs))"
apply (erule bankerberos.induct)
apply (drule_tac [7] Says_Server_message_form)
apply (erule_tac [5] Says_S_message_form [THEN disjE], analz_freshK, spy_analz, auto)
done
lemma analz_insert_freshK:
"⟦ evs ∈ bankerberos; KAB ∉ range shrK ⟧ ⟹
(Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K ∈ analz (spies evs))"
apply (simp only: analz_image_freshK analz_image_freshK_simps)
done
text‹The session key K uniquely identifies the message›
lemma unique_session_keys:
"⟦ Says Server A
(Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄) ∈ set evs;
Says Server A'
(Crypt (shrK A') ⦃Number Tk', Agent B', Key K, X'⦄) ∈ set evs;
evs ∈ bankerberos ⟧ ⟹ A=A' ∧ Tk=Tk' ∧ B=B' ∧ X = X'"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] BK3_msg_in_parts_spies, simp_all)
txt‹BK2: it can't be a new key›
apply blast
done
lemma Server_Unique:
"⟦ Says Server A
(Crypt (shrK A) ⦃Number Tk, Agent B, Key K, Ticket⦄) ∈ set evs;
evs ∈ bankerberos ⟧ ⟹
Unique Says Server A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, Ticket⦄)
on evs"
apply (erule rev_mp, erule bankerberos.induct, simp_all add: Unique_def)
apply blast
done
subsection‹Non-temporal guarantees, explicitly relying on non-occurrence of
oops events - refined below by temporal guarantees›
text‹Non temporal treatment of confidentiality›
text‹Lemma: the session key sent in msg BK2 would be lost by oops
if the spy could see it!›
lemma lemma_conf [rule_format (no_asm)]:
"⟦ A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says Server A
(Crypt (shrK A) ⦃Number Tk, Agent B, Key K,
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄⦄)
∈ set evs ⟶
Key K ∈ analz (spies evs) ⟶ Notes Spy ⦃Number Tk, Key K⦄ ∈ set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [5] Says_S_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: analz_insert_eq analz_insert_freshK pushes)
txt‹Fake›
apply spy_analz
txt‹BK2›
apply (blast intro: parts_insertI)
txt‹BK3›
apply (case_tac "Aa ∈ bad")
prefer 2 apply (blast dest: Kab_authentic unique_session_keys)
apply (blast dest: Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad elim!: MPair_analz)
txt‹Oops›
apply (blast dest: unique_session_keys)
done
text‹Confidentiality for the Server: Spy does not see the keys sent in msg BK2
as long as they have not expired.›
lemma Confidentiality_S:
"⟦ Says Server A
(Crypt K' ⦃Number Tk, Agent B, Key K, Ticket⦄) ∈ set evs;
Notes Spy ⦃Number Tk, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf)
done
text‹Confidentiality for Alice›
lemma Confidentiality_A:
"⟦ Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄ ∈ parts (spies evs);
Notes Spy ⦃Number Tk, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (blast dest!: Kab_authentic Confidentiality_S)
done
text‹Confidentiality for Bob›
lemma Confidentiality_B:
"⟦ Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄
∈ parts (spies evs);
Notes Spy ⦃Number Tk, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (blast dest!: ticket_authentic Confidentiality_S)
done
text‹Non temporal treatment of authentication›
text‹Lemmas ‹lemma_A› and ‹lemma_B› in fact are common to both temporal and non-temporal treatments›
lemma lemma_A [rule_format]:
"⟦ A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹
Key K ∉ analz (spies evs) ⟶
Says Server A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄)
∈ set evs ⟶
Crypt K ⦃Agent A, Number Ta⦄ ∈ parts (spies evs) ⟶
Says A B ⦃X, Crypt K ⦃Agent A, Number Ta⦄⦄
∈ set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (frule_tac [6] BK3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt‹Fake›
apply blast
txt‹BK2›
apply (force dest: Crypt_imp_invKey_keysFor)
txt‹BK3›
apply (blast dest: Kab_authentic unique_session_keys)
done
lemma lemma_B [rule_format]:
"⟦ B ∉ bad; evs ∈ bankerberos ⟧
⟹ Key K ∉ analz (spies evs) ⟶
Says Server A (Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄)
∈ set evs ⟶
Crypt K (Number Ta) ∈ parts (spies evs) ⟶
Says B A (Crypt K (Number Ta)) ∈ set evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (drule_tac [6] BK3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt‹Fake›
apply blast
txt‹BK2›
apply (force dest: Crypt_imp_invKey_keysFor)
txt‹BK4›
apply (blast dest: ticket_authentic unique_session_keys
Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad)
done
text‹The "r" suffix indicates theorems where the confidentiality assumptions are relaxed by the corresponding arguments.›
text‹Authentication of A to B›
lemma B_authenticates_A_r:
"⟦ Crypt K ⦃Agent A, Number Ta⦄ ∈ parts (spies evs);
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄ ∈ parts (spies evs);
Notes Spy ⦃Number Tk, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says A B ⦃Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄,
Crypt K ⦃Agent A, Number Ta⦄⦄ ∈ set evs"
apply (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S [THEN [2] rev_notE])
done
text‹Authentication of B to A›
lemma A_authenticates_B_r:
"⟦ Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄ ∈ parts (spies evs);
Notes Spy ⦃Number Tk, Key K⦄ ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says B A (Crypt K (Number Ta)) ∈ set evs"
apply (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S [THEN [2] rev_notE])
done
lemma B_authenticates_A:
"⟦ Crypt K ⦃Agent A, Number Ta⦄ ∈ parts (spies evs);
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄ ∈ parts (spies evs);
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says A B ⦃Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄,
Crypt K ⦃Agent A, Number Ta⦄⦄ ∈ set evs"
apply (blast dest!: ticket_authentic intro!: lemma_A)
done
lemma A_authenticates_B:
"⟦ Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄ ∈ parts (spies evs);
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says B A (Crypt K (Number Ta)) ∈ set evs"
apply (blast dest!: Kab_authentic intro!: lemma_B)
done
subsection‹Temporal guarantees, relying on a temporal check that insures that
no oops event occurred. These are available in the sense of goal availability›
text‹Temporal treatment of confidentiality›
text‹Lemma: the session key sent in msg BK2 would be EXPIRED
if the spy could see it!›
lemma lemma_conf_temporal [rule_format (no_asm)]:
"⟦ A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says Server A
(Crypt (shrK A) ⦃Number Tk, Agent B, Key K,
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄⦄)
∈ set evs ⟶
Key K ∈ analz (spies evs) ⟶ expiredK Tk evs"
apply (erule bankerberos.induct)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [5] Says_S_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: less_SucI analz_insert_eq analz_insert_freshK pushes)
txt‹Fake›
apply spy_analz
txt‹BK2›
apply (blast intro: parts_insertI less_SucI)
txt‹BK3›
apply (metis Crypt_Spy_analz_bad Kab_authentic Says_imp_analz_Spy
Says_imp_parts_knows_Spy analz.Snd less_SucI unique_session_keys)
txt‹Oops: PROOF FAILS if unsafe intro below›
apply (blast dest: unique_session_keys intro!: less_SucI)
done
text‹Confidentiality for the Server: Spy does not see the keys sent in msg BK2
as long as they have not expired.›
lemma Confidentiality_S_temporal:
"⟦ Says Server A
(Crypt K' ⦃Number T, Agent B, Key K, X⦄) ∈ set evs;
¬ expiredK T evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma_conf_temporal)
done
text‹Confidentiality for Alice›
lemma Confidentiality_A_temporal:
"⟦ Crypt (shrK A) ⦃Number T, Agent B, Key K, X⦄ ∈ parts (spies evs);
¬ expiredK T evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (blast dest!: Kab_authentic Confidentiality_S_temporal)
done
text‹Confidentiality for Bob›
lemma Confidentiality_B_temporal:
"⟦ Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄
∈ parts (spies evs);
¬ expiredK Tk evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos
⟧ ⟹ Key K ∉ analz (spies evs)"
apply (blast dest!: ticket_authentic Confidentiality_S_temporal)
done
text‹Temporal treatment of authentication›
text‹Authentication of A to B›
lemma B_authenticates_A_temporal:
"⟦ Crypt K ⦃Agent A, Number Ta⦄ ∈ parts (spies evs);
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄
∈ parts (spies evs);
¬ expiredK Tk evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says A B ⦃Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄,
Crypt K ⦃Agent A, Number Ta⦄⦄ ∈ set evs"
apply (blast dest!: ticket_authentic
intro!: lemma_A
elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
done
text‹Authentication of B to A›
lemma A_authenticates_B_temporal:
"⟦ Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄
∈ parts (spies evs);
¬ expiredK Tk evs;
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ Says B A (Crypt K (Number Ta)) ∈ set evs"
apply (blast dest!: Kab_authentic
intro!: lemma_B elim!: Confidentiality_S_temporal [THEN [2] rev_notE])
done
subsection‹Treatment of the key distribution goal using trace inspection. All
guarantees are in non-temporal form, hence non available, though their temporal
form is trivial to derive. These guarantees also convey a stronger form of
authentication - non-injective agreement on the session key›
lemma B_Issues_A:
"⟦ Says B A (Crypt K (Number Ta)) ∈ set evs;
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ B Issues A with (Crypt K (Number Ta)) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct, analz_mono_contra)
apply (simp_all (no_asm_simp))
txt‹fake›
apply blast
txt‹K4 obviously is the non-trivial case›
apply (simp add: takeWhile_tail)
apply (blast dest: ticket_authentic parts_spies_takeWhile_mono [THEN subsetD] parts_spies_evs_revD2 [THEN subsetD] intro: A_authenticates_B_temporal)
done
lemma A_authenticates_and_keydist_to_B:
"⟦ Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) ⦃Number Tk, Agent B, Key K, X⦄ ∈ parts (spies evs);
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ B Issues A with (Crypt K (Number Ta)) on evs"
apply (blast dest!: A_authenticates_B B_Issues_A)
done
lemma A_Issues_B:
"⟦ Says A B ⦃Ticket, Crypt K ⦃Agent A, Number Ta⦄⦄
∈ set evs;
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ A Issues B with (Crypt K ⦃Agent A, Number Ta⦄) on evs"
unfolding Issues_def
apply (rule exI)
apply (rule conjI, assumption)
apply (simp (no_asm))
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule bankerberos.induct, analz_mono_contra)
apply (simp_all (no_asm_simp))
txt‹fake›
apply blast
txt‹K3 is the non trivial case›
apply (simp add: takeWhile_tail)
apply auto
apply (blast dest: Kab_authentic Says_Server_message_form parts_spies_takeWhile_mono [THEN subsetD] parts_spies_evs_revD2 [THEN subsetD]
intro!: B_authenticates_A)
done
lemma B_authenticates_and_keydist_to_A:
"⟦ Crypt K ⦃Agent A, Number Ta⦄ ∈ parts (spies evs);
Crypt (shrK B) ⦃Number Tk, Agent A, Key K⦄ ∈ parts (spies evs);
Key K ∉ analz (spies evs);
A ∉ bad; B ∉ bad; evs ∈ bankerberos ⟧
⟹ A Issues B with (Crypt K ⦃Agent A, Number Ta⦄) on evs"
apply (blast dest: B_authenticates_A A_Issues_B)
done
end