Theory Analz
section‹Decomposition of Analz into two parts›
theory Analz imports Extensions begin
text‹decomposition of \<^term>‹analz› into two parts:
\<^term>‹pparts› (for pairs) and analz of \<^term>‹kparts››
subsection‹messages that do not contribute to analz›
inductive_set
pparts :: "msg set => msg set"
for H :: "msg set"
where
Inj [intro]: "⟦X ∈ H; is_MPair X⟧ ⟹ X ∈ pparts H"
| Fst [dest]: "⟦⦃X,Y⦄ ∈ pparts H; is_MPair X⟧ ⟹ X ∈ pparts H"
| Snd [dest]: "⟦⦃X,Y⦄ ∈ pparts H; is_MPair Y⟧ ⟹ Y ∈ pparts H"
subsection‹basic facts about \<^term>‹pparts››
lemma pparts_is_MPair [dest]: "X ∈ pparts H ⟹ is_MPair X"
by (erule pparts.induct, auto)
lemma Crypt_notin_pparts [iff]: "Crypt K X ∉ pparts H"
by auto
lemma Key_notin_pparts [iff]: "Key K ∉ pparts H"
by auto
lemma Nonce_notin_pparts [iff]: "Nonce n ∉ pparts H"
by auto
lemma Number_notin_pparts [iff]: "Number n ∉ pparts H"
by auto
lemma Agent_notin_pparts [iff]: "Agent A ∉ pparts H"
by auto
lemma pparts_empty [iff]: "pparts {} = {}"
by (auto, erule pparts.induct, auto)
lemma pparts_insertI [intro]: "X ∈ pparts H ⟹ X ∈ pparts (insert Y H)"
by (erule pparts.induct, auto)
lemma pparts_sub: "⟦X ∈ pparts G; G ⊆ H⟧ ⟹ X ∈ pparts H"
by (erule pparts.induct, auto)
lemma pparts_insert2 [iff]: "pparts (insert X (insert Y H))
= pparts {X} Un pparts {Y} Un pparts H"
by (rule eq, (erule pparts.induct, auto)+)
lemma pparts_insert_MPair [iff]: "pparts (insert ⦃X,Y⦄ H)
= insert ⦃X,Y⦄ (pparts ({X,Y} ∪ H))"
apply (rule eq, (erule pparts.induct, auto)+)
apply (rule_tac Y=Y in pparts.Fst, auto)
apply (erule pparts.induct, auto)
by (rule_tac X=X in pparts.Snd, auto)
lemma pparts_insert_Nonce [iff]: "pparts (insert (Nonce n) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_Crypt [iff]: "pparts (insert (Crypt K X) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_Key [iff]: "pparts (insert (Key K) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_Agent [iff]: "pparts (insert (Agent A) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_Number [iff]: "pparts (insert (Number n) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_Hash [iff]: "pparts (insert (Hash X) H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert: "X ∈ pparts (insert Y H) ⟹ X ∈ pparts {Y} ∪ pparts H"
by (erule pparts.induct, blast+)
lemma insert_pparts: "X ∈ pparts {Y} ∪ pparts H ⟹ X ∈ pparts (insert Y H)"
by (safe, erule pparts.induct, auto)
lemma pparts_Un [iff]: "pparts (G ∪ H) = pparts G ∪ pparts H"
by (rule eq, erule pparts.induct, auto dest: pparts_sub)
lemma pparts_pparts [iff]: "pparts (pparts H) = pparts H"
by (rule eq, erule pparts.induct, auto)
lemma pparts_insert_eq: "pparts (insert X H) = pparts {X} Un pparts H"
by (rule_tac A=H in insert_Un, rule pparts_Un)
lemmas pparts_insert_substI = pparts_insert_eq [THEN ssubst]
lemma in_pparts: "Y ∈ pparts H ⟹ ∃X. X ∈ H ∧ Y ∈ pparts {X}"
by (erule pparts.induct, auto)
subsection‹facts about \<^term>‹pparts› and \<^term>‹parts››
lemma pparts_no_Nonce [dest]: "⟦X ∈ pparts {Y}; Nonce n ∉ parts {Y}⟧
⟹ Nonce n ∉ parts {X}"
by (erule pparts.induct, simp_all)
subsection‹facts about \<^term>‹pparts› and \<^term>‹analz››
lemma pparts_analz: "X ∈ pparts H ⟹ X ∈ analz H"
by (erule pparts.induct, auto)
lemma pparts_analz_sub: "⟦X ∈ pparts G; G ⊆ H⟧ ⟹ X ∈ analz H"
by (auto dest: pparts_sub pparts_analz)
subsection‹messages that contribute to analz›
inductive_set
kparts :: "msg set => msg set"
for H :: "msg set"
where
Inj [intro]: "⟦X ∈ H; not_MPair X⟧ ⟹ X ∈ kparts H"
| Fst [intro]: "⟦⦃X,Y⦄ ∈ pparts H; not_MPair X⟧ ⟹ X ∈ kparts H"
| Snd [intro]: "⟦⦃X,Y⦄ ∈ pparts H; not_MPair Y⟧ ⟹ Y ∈ kparts H"
subsection‹basic facts about \<^term>‹kparts››
lemma kparts_not_MPair [dest]: "X ∈ kparts H ⟹ not_MPair X"
by (erule kparts.induct, auto)
lemma kparts_empty [iff]: "kparts {} = {}"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insertI [intro]: "X ∈ kparts H ⟹ X ∈ kparts (insert Y H)"
by (erule kparts.induct, auto dest: pparts_insertI)
lemma kparts_insert2 [iff]: "kparts (insert X (insert Y H))
= kparts {X} ∪ kparts {Y} ∪ kparts H"
by (rule eq, (erule kparts.induct, auto)+)
lemma kparts_insert_MPair [iff]: "kparts (insert ⦃X,Y⦄ H)
= kparts ({X,Y} ∪ H)"
by (rule eq, (erule kparts.induct, auto)+)
lemma kparts_insert_Nonce [iff]: "kparts (insert (Nonce n) H)
= insert (Nonce n) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_Crypt [iff]: "kparts (insert (Crypt K X) H)
= insert (Crypt K X) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_Key [iff]: "kparts (insert (Key K) H)
= insert (Key K) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_Agent [iff]: "kparts (insert (Agent A) H)
= insert (Agent A) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_Number [iff]: "kparts (insert (Number n) H)
= insert (Number n) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_Hash [iff]: "kparts (insert (Hash X) H)
= insert (Hash X) (kparts H)"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert: "X ∈ kparts (insert X H) ⟹ X ∈ kparts {X} ∪ kparts H"
by (erule kparts.induct, (blast dest: pparts_insert)+)
lemma kparts_insert_fst [rule_format,dest]: "X ∈ kparts (insert Z H) ⟹
X ∉ kparts H ⟶ X ∈ kparts {Z}"
by (erule kparts.induct, (blast dest: pparts_insert)+)
lemma kparts_sub: "⟦X ∈ kparts G; G ⊆ H⟧ ⟹ X ∈ kparts H"
by (erule kparts.induct, auto dest: pparts_sub)
lemma kparts_Un [iff]: "kparts (G ∪ H) = kparts G ∪ kparts H"
by (rule eq, erule kparts.induct, auto dest: kparts_sub)
lemma pparts_kparts [iff]: "pparts (kparts H) = {}"
by (rule eq, erule pparts.induct, auto)
lemma kparts_kparts [iff]: "kparts (kparts H) = kparts H"
by (rule eq, erule kparts.induct, auto)
lemma kparts_insert_eq: "kparts (insert X H) = kparts {X} ∪ kparts H"
by (rule_tac A=H in insert_Un, rule kparts_Un)
lemmas kparts_insert_substI = kparts_insert_eq [THEN ssubst]
lemma in_kparts: "Y ∈ kparts H ⟹ ∃X. X ∈ H ∧ Y ∈ kparts {X}"
by (erule kparts.induct, auto dest: in_pparts)
lemma kparts_has_no_pair [iff]: "has_no_pair (kparts H)"
by auto
subsection‹facts about \<^term>‹kparts› and \<^term>‹parts››
lemma kparts_no_Nonce [dest]: "⟦X ∈ kparts {Y}; Nonce n ∉ parts {Y}⟧
⟹ Nonce n ∉ parts {X}"
by (erule kparts.induct, auto)
lemma kparts_parts: "X ∈ kparts H ⟹ X ∈ parts H"
by (erule kparts.induct, auto dest: pparts_analz)
lemma parts_kparts: "X ∈ parts (kparts H) ⟹ X ∈ parts H"
by (erule parts.induct, auto dest: kparts_parts
intro: parts.Fst parts.Snd parts.Body)
lemma Crypt_kparts_Nonce_parts [dest]: "⟦Crypt K Y ∈ kparts {Z};
Nonce n ∈ parts {Y}⟧ ⟹ Nonce n ∈ parts {Z}"
by auto
subsection‹facts about \<^term>‹kparts› and \<^term>‹analz››
lemma kparts_analz: "X ∈ kparts H ⟹ X ∈ analz H"
by (erule kparts.induct, auto dest: pparts_analz)
lemma kparts_analz_sub: "⟦X ∈ kparts G; G ⊆ H⟧ ⟹ X ∈ analz H"
by (erule kparts.induct, auto dest: pparts_analz_sub)
lemma analz_kparts [rule_format,dest]: "X ∈ analz H ⟹
Y ∈ kparts {X} ⟶ Y ∈ analz H"
by (erule analz.induct, auto dest: kparts_analz_sub)
lemma analz_kparts_analz: "X ∈ analz (kparts H) ⟹ X ∈ analz H"
by (erule analz.induct, auto dest: kparts_analz)
lemma analz_kparts_insert: "X ∈ analz (kparts (insert Z H)) ⟹ X ∈ analz (kparts {Z} ∪ kparts H)"
by (rule analz_sub, auto)
lemma Nonce_kparts_synth [rule_format]: "Y ∈ synth (analz G)
⟹ Nonce n ∈ kparts {Y} ⟶ Nonce n ∈ analz G"
by (erule synth.induct, auto)
lemma kparts_insert_synth: "⟦Y ∈ parts (insert X G); X ∈ synth (analz G);
Nonce n ∈ kparts {Y}; Nonce n ∉ analz G⟧ ⟹ Y ∈ parts G"
apply (drule parts_insert_substD, clarify)
apply (drule in_sub, drule_tac X=Y in parts_sub, simp)
apply (auto dest: Nonce_kparts_synth)
done
lemma Crypt_insert_synth:
"⟦Crypt K Y ∈ parts (insert X G); X ∈ synth (analz G); Nonce n ∈ kparts {Y}; Nonce n ∉ analz G⟧
⟹ Crypt K Y ∈ parts G"
by (metis Fake_parts_insert_in_Un Nonce_kparts_synth UnE analz_conj_parts synth_simps(5))
subsection‹analz is pparts + analz of kparts›
lemma analz_pparts_kparts: "X ∈ analz H ⟹ X ∈ pparts H ∨ X ∈ analz (kparts H)"
by (erule analz.induct, auto)
lemma analz_pparts_kparts_eq: "analz H = pparts H Un analz (kparts H)"
by (rule eq, auto dest: analz_pparts_kparts pparts_analz analz_kparts_analz)
lemmas analz_pparts_kparts_substI = analz_pparts_kparts_eq [THEN ssubst]
lemmas analz_pparts_kparts_substD = analz_pparts_kparts_eq [THEN sym, THEN ssubst]
end