Theory Forward
theory Forward imports TPrimes begin
text‹\noindent
Forward proof material: of, OF, THEN, simplify, rule_format.
›
text‹\noindent
SKIP most developments...
›
lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
apply (auto simp add: is_gcd_def)
done
lemma gcd_commute: "gcd m n = gcd n m"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (subst is_gcd_commute)
apply (simp add: is_gcd)
done
lemma gcd_1 [simp]: "gcd m (Suc 0) = Suc 0"
apply simp
done
lemma gcd_1_left [simp]: "gcd (Suc 0) m = Suc 0"
apply (simp add: gcd_commute [of "Suc 0"])
done
text‹\noindent
as far as HERE.
›
text‹\noindent
SKIP THIS PROOF
›
lemma gcd_mult_distrib2: "k * gcd m n = gcd (k*m) (k*n)"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
apply simp
apply (case_tac "k=0")
apply simp_all
done
text ‹
@{thm[display] gcd_mult_distrib2}
\rulename{gcd_mult_distrib2}
›
text‹\noindent
of, simplified
›
lemmas gcd_mult_0 = gcd_mult_distrib2 [of k 1] for k
lemmas gcd_mult_1 = gcd_mult_0 [simplified]
lemmas where1 = gcd_mult_distrib2 [where m=1]
lemmas where2 = gcd_mult_distrib2 [where m=1 and k=1]
lemmas where3 = gcd_mult_distrib2 [where m=1 and k="j+k"] for j k
text ‹
example using ``of'':
@{thm[display] gcd_mult_distrib2 [of _ 1]}
example using ``where'':
@{thm[display] gcd_mult_distrib2 [where m=1]}
example using ``where'', ``and'':
@{thm[display] gcd_mult_distrib2 [where m=1 and k="j+k"]}
@{thm[display] gcd_mult_0}
\rulename{gcd_mult_0}
@{thm[display] gcd_mult_1}
\rulename{gcd_mult_1}
@{thm[display] sym}
\rulename{sym}
›
lemmas gcd_mult0 = gcd_mult_1 [THEN sym]
lemmas gcd_mult0' = gcd_mult_distrib2 [of k 1, simplified, THEN sym] for k
text ‹
more legible, and variables properly generalized
›
lemma gcd_mult [simp]: "gcd k (k*n) = k"
by (rule gcd_mult_distrib2 [of k 1, simplified, THEN sym])
lemmas gcd_self0 = gcd_mult [of k 1, simplified] for k
text ‹
@{thm[display] gcd_mult}
\rulename{gcd_mult}
@{thm[display] gcd_self0}
\rulename{gcd_self0}
›
text ‹
Rules handy with THEN
@{thm[display] iffD1}
\rulename{iffD1}
@{thm[display] iffD2}
\rulename{iffD2}
›
text ‹
again: more legible, and variables properly generalized
›
lemma gcd_self [simp]: "gcd k k = k"
by (rule gcd_mult [of k 1, simplified])
text‹
NEXT SECTION: Methods for Forward Proof
NEW
theorem arg_cong, useful in forward steps
@{thm[display] arg_cong[no_vars]}
\rulename{arg_cong}
›
lemma "2 ≤ u ⟹ u*m ≠ Suc(u*n)"
apply (intro notI)
txt‹
before using arg_cong
@{subgoals[display,indent=0,margin=65]}
›
apply (drule_tac f="λx. x mod u" in arg_cong)
txt‹
after using arg_cong
@{subgoals[display,indent=0,margin=65]}
›
apply (simp add: mod_Suc)
done
text‹
have just used this rule:
@{thm[display] mod_Suc[no_vars]}
\rulename{mod_Suc}
@{thm[display] mult_le_mono1[no_vars]}
\rulename{mult_le_mono1}
›
text‹
example of "insert"
›
lemma relprime_dvd_mult:
"⟦ gcd k n = 1; k dvd m*n ⟧ ⟹ k dvd m"
apply (insert gcd_mult_distrib2 [of m k n])
txt‹@{subgoals[display,indent=0,margin=65]}›
apply simp
txt‹@{subgoals[display,indent=0,margin=65]}›
apply (erule_tac t="m" in ssubst)
apply simp
done
text ‹
@{thm[display] relprime_dvd_mult}
\rulename{relprime_dvd_mult}
Another example of "insert"
@{thm[display] div_mult_mod_eq}
\rulename{div_mult_mod_eq}
›
lemma relprime_dvd_mult_iff: "gcd k n = 1 ⟹ (k dvd m*n) = (k dvd m)"
by (auto intro: relprime_dvd_mult elim: dvdE)
lemma relprime_20_81: "gcd 20 81 = 1"
by (simp add: gcd.simps)
text ‹
Examples of 'OF'
@{thm[display] relprime_dvd_mult}
\rulename{relprime_dvd_mult}
@{thm[display] relprime_dvd_mult [OF relprime_20_81]}
@{thm[display] dvd_refl}
\rulename{dvd_refl}
@{thm[display] dvd_add}
\rulename{dvd_add}
@{thm[display] dvd_add [OF dvd_refl dvd_refl]}
@{thm[display] dvd_add [OF _ dvd_refl]}
›
lemma "⟦(z::int) < 37; 66 < 2*z; z*z ≠ 1225; Q(34); Q(36)⟧ ⟹ Q(z)"
apply (subgoal_tac "z = 34 ∨ z = 36")
txt‹
the tactic leaves two subgoals:
@{subgoals[display,indent=0,margin=65]}
›
apply blast
apply (subgoal_tac "z ≠ 35")
txt‹
the tactic leaves two subgoals:
@{subgoals[display,indent=0,margin=65]}
›
apply arith
apply force
done
end