Theory TPrimes
theory TPrimes imports Main begin
fun gcd :: "nat ⇒ nat ⇒ nat" where
"gcd m n = (if n=0 then m else gcd n (m mod n))"
text ‹Now in Basic.thy!
@{thm[display]"dvd_def"}
\rulename{dvd_def}
›
lemma gcd_0 [simp]: "gcd m 0 = m"
apply (simp)
done
lemma gcd_non_0 [simp]: "0<n ⟹ gcd m n = gcd n (m mod n)"
apply (simp)
done
declare gcd.simps [simp del]
lemma gcd_dvd_both: "(gcd m n dvd m) ∧ (gcd m n dvd n)"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
txt‹subgoals after the case tac
@{subgoals[display,indent=0,margin=65]}
›
apply (simp_all)
by (blast dest: dvd_mod_imp_dvd)
text ‹
@{thm[display] dvd_mod_imp_dvd}
\rulename{dvd_mod_imp_dvd}
@{thm[display] dvd_trans}
\rulename{dvd_trans}
›
lemmas gcd_dvd1 [iff] = gcd_dvd_both [THEN conjunct1]
lemmas gcd_dvd2 [iff] = gcd_dvd_both [THEN conjunct2]
text ‹
\begin{quote}
@{thm[display] gcd_dvd1}
\rulename{gcd_dvd1}
@{thm[display] gcd_dvd2}
\rulename{gcd_dvd2}
\end{quote}
›
lemma gcd_greatest [rule_format]:
"k dvd m ⟶ k dvd n ⟶ k dvd gcd m n"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
txt‹subgoals after the case tac
@{subgoals[display,indent=0,margin=65]}
›
apply (simp_all add: dvd_mod)
done
text ‹
@{thm[display] dvd_mod}
\rulename{dvd_mod}
›
lemma "k dvd m ⟶ k dvd n ⟶ k dvd gcd m n"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n")
apply (simp_all add: dvd_mod)
done
theorem gcd_greatest_iff [iff]:
"(k dvd gcd m n) = (k dvd m ∧ k dvd n)"
by (blast intro!: gcd_greatest intro: dvd_trans)
definition is_gcd :: "[nat,nat,nat] ⇒ bool" where
"is_gcd p m n == p dvd m ∧ p dvd n ∧
(∀d. d dvd m ∧ d dvd n ⟶ d dvd p)"
lemma is_gcd: "is_gcd (gcd m n) m n"
apply (simp add: is_gcd_def gcd_greatest)
done
lemma is_gcd_unique: "⟦ is_gcd m a b; is_gcd n a b ⟧ ⟹ m=n"
apply (simp add: is_gcd_def)
apply (blast intro: dvd_antisym)
done
text ‹
@{thm[display] dvd_antisym}
\rulename{dvd_antisym}
\begin{isabelle}
proof\ (prove):\ step\ 1\isanewline
\isanewline
goal\ (lemma\ is_gcd_unique):\isanewline
\isasymlbrakk is_gcd\ m\ a\ b;\ is_gcd\ n\ a\ b\isasymrbrakk \ \isasymLongrightarrow \ m\ =\ n\isanewline
\ 1.\ \isasymlbrakk m\ dvd\ a\ \isasymand \ m\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ m);\isanewline
\ \ \ \ \ \ \ n\ dvd\ a\ \isasymand \ n\ dvd\ b\ \isasymand \ (\isasymforall d.\ d\ dvd\ a\ \isasymand \ d\ dvd\ b\ \isasymlongrightarrow \ d\ dvd\ n)\isasymrbrakk \isanewline
\ \ \ \ \isasymLongrightarrow \ m\ =\ n
\end{isabelle}
›
lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (simp add: is_gcd_def)
apply (blast intro: dvd_trans)
done
text‹
\begin{isabelle}
proof\ (prove):\ step\ 3\isanewline
\isanewline
goal\ (lemma\ gcd_assoc):\isanewline
gcd\ (gcd\ (k,\ m),\ n)\ =\ gcd\ (k,\ gcd\ (m,\ n))\isanewline
\ 1.\ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ k\ \isasymand \isanewline
\ \ \ \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ m\ \isasymand \ gcd\ (k,\ gcd\ (m,\ n))\ dvd\ n
\end{isabelle}
›
lemma gcd_dvd_gcd_mult: "gcd m n dvd gcd (k*m) n"
apply (auto intro: dvd_trans [of _ m])
done
lemma gcd_mult_cancel: "gcd k n = 1 ⟹ gcd (k*m) n = gcd m n"
oops
end