Theory Confluence

(*  Title:      ZF/Resid/Confluence.thy
    Author:     Ole Rasmussen
    Copyright   1995  University of Cambridge
*)

theory Confluence imports Reduction begin

definition
  confluence    :: "io"  where
    "confluence(R)    
       x y. x,y  R  (z.x,z  R  (u.y,u  R  z,u  R))"

definition
  strip         :: "o"  where
    "strip  x y. (x =⟹ y)  
                    (z.(x =1⇒ z)  (u.(y =1⇒ u)  (z=⟹u)))" 


(* ------------------------------------------------------------------------- *)
(*        strip lemmas                                                       *)
(* ------------------------------------------------------------------------- *)

lemma strip_lemma_r: 
    "confluence(Spar_red1) strip"
  unfolding confluence_def strip_def
apply (rule impI [THEN allI, THEN allI])
apply (erule Spar_red.induct, fast)
apply (fast intro: Spar_red.trans)
done


lemma strip_lemma_l: 
    "strip confluence(Spar_red)"
  unfolding confluence_def strip_def
apply (rule impI [THEN allI, THEN allI])
apply (erule Spar_red.induct, blast)
apply clarify
apply (blast intro: Spar_red.trans)
done

(* ------------------------------------------------------------------------- *)
(*      Confluence                                                           *)
(* ------------------------------------------------------------------------- *)


lemma parallel_moves: "confluence(Spar_red1)"
apply (unfold confluence_def, clarify)
apply (frule simulation)
apply (frule_tac n = z in simulation, clarify)
apply (frule_tac v = va in paving)
apply (force intro: completeness)+
done

lemmas confluence_parallel_reduction =
      parallel_moves [THEN strip_lemma_r, THEN strip_lemma_l]

lemma lemma1: "confluence(Spar_red) confluence(Sred)"
by (unfold confluence_def, blast intro: par_red_red red_par_red)

lemmas confluence_beta_reduction =
       confluence_parallel_reduction [THEN lemma1]


(**** Conversion ****)

consts
  Sconv1        :: "i"
  Sconv         :: "i"

abbreviation
  Sconv1_rel (infixl <-1-> 50) where
  "a<-1->b  a,b  Sconv1"

abbreviation
  Sconv_rel (infixl <-⟶ 50) where
  "a<-⟶b  a,b  Sconv"
  
inductive
  domains       "Sconv1"  "lambda*lambda"
  intros
    red1:        "m -1-> n  m<-1->n"
    expl:        "n -1-> m  m<-1->n"
  type_intros    red1D1 red1D2 lambda.intros bool_typechecks

declare Sconv1.intros [intro]

inductive
  domains       "Sconv"  "lambda*lambda"
  intros
    one_step:    "m<-1->n   m<-⟶n"
    refl:        "m  lambda  m<-⟶m"
    trans:       "m<-⟶n; n<-⟶p  m<-⟶p"
  type_intros    Sconv1.dom_subset [THEN subsetD] lambda.intros bool_typechecks

declare Sconv.intros [intro]

lemma conv_sym: "m<-⟶n  n<-⟶m"
apply (erule Sconv.induct)
apply (erule Sconv1.induct, blast+)
done

(* ------------------------------------------------------------------------- *)
(*      Church_Rosser Theorem                                                *)
(* ------------------------------------------------------------------------- *)

lemma Church_Rosser: "m<-⟶n  p.(m -⟶p)  (n -⟶ p)"
apply (erule Sconv.induct)
apply (erule Sconv1.induct)
apply (blast intro: red1D1 redD2)
apply (blast intro: red1D1 redD2)
apply (blast intro: red1D1 redD2)
apply (cut_tac confluence_beta_reduction)
  unfolding confluence_def
apply (blast intro: Sred.trans)
done

end