Theory Cube
section ‹Barendregt's Lambda-Cube›
theory Cube
imports Pure
begin
setup Pure_Thy.old_appl_syntax_setup
named_theorems rules "Cube inference rules"
typedecl "term"
typedecl "context"
typedecl typing
axiomatization
Abs :: "[term, term ⇒ term] ⇒ term" and
Prod :: "[term, term ⇒ term] ⇒ term" and
Trueprop :: "[context, typing] ⇒ prop" and
MT_context :: "context" and
Context :: "[typing, context] ⇒ context" and
star :: "term" ("*") and
box :: "term" ("□") and
app :: "[term, term] ⇒ term" (infixl "⋅" 20) and
Has_type :: "[term, term] ⇒ typing"
nonterminal context' and typing'
syntax
"_Trueprop" :: "[context', typing'] ⇒ prop" ("(_/ ⊢ _)")
"_Trueprop1" :: "typing' ⇒ prop" ("(_)")
"" :: "id ⇒ context'" ("_")
"" :: "var ⇒ context'" ("_")
"_MT_context" :: "context'" ("")
"_Context" :: "[typing', context'] ⇒ context'" ("_ _")
"_Has_type" :: "[term, term] ⇒ typing'" ("(_:/ _)" [0, 0] 5)
"_Lam" :: "[idt, term, term] ⇒ term" ("(3❙λ_:_./ _)" [0, 0, 0] 10)
"_Pi" :: "[idt, term, term] ⇒ term" ("(3∏_:_./ _)" [0, 0] 10)
"_arrow" :: "[term, term] ⇒ term" (infixr "→" 10)
translations
"_Trueprop(G, t)" ⇌ "CONST Trueprop(G, t)"
("prop") "x:X" ⇌ ("prop") "⊢ x:X"
"_MT_context" ⇌ "CONST MT_context"
"_Context" ⇌ "CONST Context"
"_Has_type" ⇌ "CONST Has_type"
"❙λx:A. B" ⇌ "CONST Abs(A, λx. B)"
"∏x:A. B" ⇀ "CONST Prod(A, λx. B)"
"A → B" ⇀ "CONST Prod(A, λ_. B)"
print_translation ‹
[(\<^const_syntax>‹Prod›,
fn _ => Syntax_Trans.dependent_tr' (\<^syntax_const>‹_Pi›, \<^syntax_const>‹_arrow›))]
›
axiomatization where
s_b: "*: □" and
strip_s: "⟦A:*; a:A ⟹ G ⊢ x:X⟧ ⟹ a:A G ⊢ x:X" and
strip_b: "⟦A:□; a:A ⟹ G ⊢ x:X⟧ ⟹ a:A G ⊢ x:X" and
app: "⟦F:Prod(A, B); C:A⟧ ⟹ F⋅C: B(C)" and
pi_ss: "⟦A:*; ⋀x. x:A ⟹ B(x):*⟧ ⟹ Prod(A, B):*" and
lam_ss: "⟦A:*; ⋀x. x:A ⟹ f(x):B(x); ⋀x. x:A ⟹ B(x):* ⟧
⟹ Abs(A, f) : Prod(A, B)" and
beta: "Abs(A, f)⋅a ≡ f(a)"
lemmas [rules] = s_b strip_s strip_b app lam_ss pi_ss
lemma imp_elim:
assumes "f:A→B" and "a:A" and "f⋅a:B ⟹ PROP P"
shows "PROP P" by (rule app assms)+
lemma pi_elim:
assumes "F:Prod(A,B)" and "a:A" and "F⋅a:B(a) ⟹ PROP P"
shows "PROP P" by (rule app assms)+
locale L2 =
assumes pi_bs: "⟦A:□; ⋀x. x:A ⟹ B(x):*⟧ ⟹ Prod(A,B):*"
and lam_bs: "⟦A:□; ⋀x. x:A ⟹ f(x):B(x); ⋀x. x:A ⟹ B(x):*⟧
⟹ Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_bs pi_bs
end
locale Lomega =
assumes
pi_bb: "⟦A:□; ⋀x. x:A ⟹ B(x):□⟧ ⟹ Prod(A,B):□"
and lam_bb: "⟦A:□; ⋀x. x:A ⟹ f(x):B(x); ⋀x. x:A ⟹ B(x):□⟧
⟹ Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_bb pi_bb
end
locale LP =
assumes pi_sb: "⟦A:*; ⋀x. x:A ⟹ B(x):□⟧ ⟹ Prod(A,B):□"
and lam_sb: "⟦A:*; ⋀x. x:A ⟹ f(x):B(x); ⋀x. x:A ⟹ B(x):□⟧
⟹ Abs(A,f) : Prod(A,B)"
begin
lemmas [rules] = lam_sb pi_sb
end
locale LP2 = LP + L2
begin
lemmas [rules] = lam_bs pi_bs lam_sb pi_sb
end
locale Lomega2 = L2 + Lomega
begin
lemmas [rules] = lam_bs pi_bs lam_bb pi_bb
end
locale LPomega = LP + Lomega
begin
lemmas [rules] = lam_bb pi_bb lam_sb pi_sb
end
locale CC = L2 + LP + Lomega
begin
lemmas [rules] = lam_bs pi_bs lam_bb pi_bb lam_sb pi_sb
end
end