Theory Synthesis
section ‹Synthesis examples, using a crude form of narrowing›
theory Synthesis
imports "../CTT"
begin
text ‹discovery of predecessor function›
schematic_goal "?a : ∑pred:?A . Eq(N, pred`0, 0) × (∏n:N. Eq(N, pred ` succ(n), n))"
apply intr
apply eqintr
apply (rule_tac [3] reduction_rls)
apply (rule_tac [5] comp_rls)
apply rew
done
text ‹the function fst as an element of a function type›
schematic_goal [folded basic_defs]:
"A type ⟹ ?a: ∑f:?B . ∏i:A. ∏j:A. Eq(A, f ` <i,j>, i)"
apply intr
apply eqintr
apply (rule_tac [2] reduction_rls)
apply (rule_tac [4] comp_rls)
apply typechk
txt "now put in A everywhere"
apply assumption+
done
text ‹An interesting use of the eliminator, when›
schematic_goal "?a : ∏i:N. Eq(?A, ?b(inl(i)), <0 , i>)
× Eq(?A, ?b(inr(i)), <succ(0), i>)"
apply intr
apply eqintr
apply (rule comp_rls)
apply rew
done
schematic_goal "?a : ∏i:N. Eq(?A(i), ?b(inl(i)), <0 , i>)
× Eq(?A(i), ?b(inr(i)), <succ(0),i>)"
oops
text ‹A tricky combination of when and split›
schematic_goal [folded basic_defs]:
"?a : ∏i:N. ∏j:N. Eq(?A, ?b(inl(<i,j>)), i)
× Eq(?A, ?b(inr(<i,j>)), j)"
apply intr
apply eqintr
apply (rule PlusC_inl [THEN trans_elem])
apply (rule_tac [4] comp_rls)
apply (rule_tac [7] reduction_rls)
apply (rule_tac [10] comp_rls)
apply typechk
done
schematic_goal "?a : ∏i:N. ∏j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
× Eq(?A(i,j), ?b(inr(<i,j>)), j)"
oops
schematic_goal "?a : ∏i:N. ∏j:N. Eq(N, ?b(inl(<i,j>)), i)
× Eq(N, ?b(inr(<i,j>)), j)"
oops
text ‹Deriving the addition operator›
schematic_goal [folded arith_defs]:
"?c : ∏n:N. Eq(N, ?f(0,n), n)
× (∏m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))"
apply intr
apply eqintr
apply (rule comp_rls)
apply rew
done
text ‹The addition function -- using explicit lambdas›
schematic_goal [folded arith_defs]:
"?c : ∑plus : ?A .
∏x:N. Eq(N, plus`0`x, x)
× (∏y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))"
apply intr
apply eqintr
apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
apply (tactic "resolve_tac \<^context> [TSimp.split_eqn] 3")
apply (tactic "SELECT_GOAL (rew_tac \<^context> []) 4")
apply (rule_tac [3] p = "y" in NC_succ)
apply rew
done
end