Theory Sender
section ‹The implementation: sender›
theory Sender
imports IOA.IOA Action
begin
type_synonym
'm sender_state = "'m list * bool multiset * bool multiset * bool * bool"
definition sq :: "'m sender_state => 'm list" where "sq = fst"
definition ssent :: "'m sender_state => bool multiset" where "ssent = fst ∘ snd"
definition srcvd :: "'m sender_state => bool multiset" where "srcvd = fst ∘ snd ∘ snd"
definition sbit :: "'m sender_state => bool" where "sbit = fst ∘ snd ∘ snd ∘ snd"
definition ssending :: "'m sender_state => bool" where "ssending = snd ∘ snd ∘ snd ∘ snd"
definition
sender_asig :: "'m action signature" where
"sender_asig = ((UN m. {S_msg(m)}) Un (UN b. {R_ack(b)}),
UN pkt. {S_pkt(pkt)},
{C_m_s,C_r_s})"
definition
sender_trans :: "('m action, 'm sender_state)transition set" where
"sender_trans =
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
S_msg(m) => sq(t)=sq(s)@[m] ∧
ssent(t)=ssent(s) ∧
srcvd(t)=srcvd(s) ∧
sbit(t)=sbit(s) ∧
ssending(t)=ssending(s) |
R_msg(m) => False |
S_pkt(pkt) => hdr(pkt) = sbit(s) ∧
(∃Q. sq(s) = (msg(pkt)#Q)) ∧
sq(t) = sq(s) ∧
ssent(t) = addm (ssent s) (sbit s) ∧
srcvd(t) = srcvd(s) ∧
sbit(t) = sbit(s) ∧
ssending(s) ∧
ssending(t) |
R_pkt(pkt) => False |
S_ack(b) => False |
R_ack(b) => sq(t)=sq(s) ∧
ssent(t)=ssent(s) ∧
srcvd(t) = addm (srcvd s) b ∧
sbit(t)=sbit(s) ∧
ssending(t)=ssending(s) |
C_m_s => count (ssent s) (~sbit s) < count (srcvd s) (~sbit s) ∧
sq(t)=sq(s) ∧
ssent(t)=ssent(s) ∧
srcvd(t)=srcvd(s) ∧
sbit(t)=sbit(s) ∧
ssending(s) ∧
~ssending(t) |
C_m_r => False |
C_r_s => count (ssent s) (sbit s) <= count (srcvd s) (~sbit s) ∧
sq(t)=tl(sq(s)) ∧
ssent(t)=ssent(s) ∧
srcvd(t)=srcvd(s) ∧
sbit(t) = (~sbit(s)) ∧
~ssending(s) ∧
ssending(t) |
C_r_r(m) => False}"
definition
sender_ioa :: "('m action, 'm sender_state)ioa" where
"sender_ioa =
(sender_asig, {([],{|},{|},False,True)}, sender_trans,{},{})"
lemma in_sender_asig:
"S_msg(m) ∈ actions(sender_asig)"
"R_msg(m) ∉ actions(sender_asig)"
"S_pkt(pkt) ∈ actions(sender_asig)"
"R_pkt(pkt) ∉ actions(sender_asig)"
"S_ack(b) ∉ actions(sender_asig)"
"R_ack(b) ∈ actions(sender_asig)"
"C_m_s ∈ actions(sender_asig)"
"C_m_r ∉ actions(sender_asig)"
"C_r_s ∈ actions(sender_asig)"
"C_r_r(m) ∉ actions(sender_asig)"
by (simp_all add: sender_asig_def actions_def asig_projections)
lemmas sender_projections = sq_def ssent_def srcvd_def sbit_def ssending_def
end