Theory Pattern_Match
section ‹An experimental pattern-matching notation›
theory Pattern_Match
imports HOLCF
begin
default_sort pcpo
text ‹FIXME: Find a proper way to un-hide constants.›
abbreviation fail :: "'a match"
where "fail ≡ Fixrec.fail"
abbreviation succeed :: "'a → 'a match"
where "succeed ≡ Fixrec.succeed"
abbreviation run :: "'a match → 'a"
where "run ≡ Fixrec.run"
subsection ‹Fatbar combinator›
definition
fatbar :: "('a → 'b match) → ('a → 'b match) → ('a → 'b match)" where
"fatbar = (Λ a b x. a⋅x +++ b⋅x)"
abbreviation
fatbar_syn :: "['a → 'b match, 'a → 'b match] ⇒ 'a → 'b match" (infixr "∥" 60) where
"m1 ∥ m2 == fatbar⋅m1⋅m2"
lemma fatbar1: "m⋅x = ⊥ ⟹ (m ∥ ms)⋅x = ⊥"
by (simp add: fatbar_def)
lemma fatbar2: "m⋅x = fail ⟹ (m ∥ ms)⋅x = ms⋅x"
by (simp add: fatbar_def)
lemma fatbar3: "m⋅x = succeed⋅y ⟹ (m ∥ ms)⋅x = succeed⋅y"
by (simp add: fatbar_def)
lemmas fatbar_simps = fatbar1 fatbar2 fatbar3
lemma run_fatbar1: "m⋅x = ⊥ ⟹ run⋅((m ∥ ms)⋅x) = ⊥"
by (simp add: fatbar_def)
lemma run_fatbar2: "m⋅x = fail ⟹ run⋅((m ∥ ms)⋅x) = run⋅(ms⋅x)"
by (simp add: fatbar_def)
lemma run_fatbar3: "m⋅x = succeed⋅y ⟹ run⋅((m ∥ ms)⋅x) = y"
by (simp add: fatbar_def)
lemmas run_fatbar_simps [simp] = run_fatbar1 run_fatbar2 run_fatbar3
subsection ‹Bind operator for match monad›
definition match_bind :: "'a match → ('a → 'b match) → 'b match" where
"match_bind = (Λ m k. sscase⋅(Λ _. fail)⋅(fup⋅k)⋅(Rep_match m))"
lemma match_bind_simps [simp]:
"match_bind⋅⊥⋅k = ⊥"
"match_bind⋅fail⋅k = fail"
"match_bind⋅(succeed⋅x)⋅k = k⋅x"
unfolding match_bind_def fail_def succeed_def
by (simp_all add: cont_Rep_match cont_Abs_match
Rep_match_strict Abs_match_inverse)
subsection ‹Case branch combinator›
definition
branch :: "('a → 'b match) ⇒ ('b → 'c) → ('a → 'c match)" where
"branch p ≡ Λ r x. match_bind⋅(p⋅x)⋅(Λ y. succeed⋅(r⋅y))"
lemma branch_simps:
"p⋅x = ⊥ ⟹ branch p⋅r⋅x = ⊥"
"p⋅x = fail ⟹ branch p⋅r⋅x = fail"
"p⋅x = succeed⋅y ⟹ branch p⋅r⋅x = succeed⋅(r⋅y)"
by (simp_all add: branch_def)
lemma branch_succeed [simp]: "branch succeed⋅r⋅x = succeed⋅(r⋅x)"
by (simp add: branch_def)
subsection ‹Cases operator›
definition
cases :: "'a match → 'a::pcpo" where
"cases = Fixrec.run"
text ‹rewrite rules for cases›
lemma cases_strict [simp]: "cases⋅⊥ = ⊥"
by (simp add: cases_def)
lemma cases_fail [simp]: "cases⋅fail = ⊥"
by (simp add: cases_def)
lemma cases_succeed [simp]: "cases⋅(succeed⋅x) = x"
by (simp add: cases_def)
subsection ‹Case syntax›
nonterminal Case_pat and Case_syn and Cases_syn
syntax
"_Case_syntax":: "['a, Cases_syn] => 'b" ("(Case _ of/ _)" 10)
"_Case1" :: "[Case_pat, 'b] => Case_syn" ("(2_ ⇒/ _)" 10)
"" :: "Case_syn => Cases_syn" ("_")
"_Case2" :: "[Case_syn, Cases_syn] => Cases_syn" ("_/ | _")
"_strip_positions" :: "'a => Case_pat" ("_")
syntax (ASCII)
"_Case1" :: "[Case_pat, 'b] => Case_syn" ("(2_ =>/ _)" 10)
translations
"_Case_syntax x ms" == "CONST cases⋅(ms⋅x)"
"_Case2 m ms" == "m ∥ ms"
text ‹Parsing Case expressions›
syntax
"_pat" :: "'a"
"_variable" :: "'a"
"_noargs" :: "'a"
translations
"_Case1 p r" => "CONST branch (_pat p)⋅(_variable p r)"
"_variable (_args x y) r" => "CONST csplit⋅(_variable x (_variable y r))"
"_variable _noargs r" => "CONST unit_when⋅r"
parse_translation ‹
[(\<^syntax_const>‹_pat›, fn _ => fn _ => Syntax.const \<^const_syntax>‹Fixrec.succeed›),
Syntax_Trans.mk_binder_tr (\<^syntax_const>‹_variable›, \<^const_syntax>‹Abs_cfun›)]
›
text ‹Printing Case expressions›
syntax
"_match" :: "'a"
print_translation ‹
let
fun dest_LAM (Const (\<^const_syntax>‹Rep_cfun›,_) $ Const (\<^const_syntax>‹unit_when›,_) $ t) =
(Syntax.const \<^syntax_const>‹_noargs›, t)
| dest_LAM (Const (\<^const_syntax>‹Rep_cfun›,_) $ Const (\<^const_syntax>‹csplit›,_) $ t) =
let
val (v1, t1) = dest_LAM t;
val (v2, t2) = dest_LAM t1;
in (Syntax.const \<^syntax_const>‹_args› $ v1 $ v2, t2) end
| dest_LAM (Const (\<^const_syntax>‹Abs_cfun›,_) $ t) =
let
val abs =
case t of Abs abs => abs
| _ => ("x", dummyT, incr_boundvars 1 t $ Bound 0);
val (x, t') = Syntax_Trans.atomic_abs_tr' abs;
in (Syntax.const \<^syntax_const>‹_variable› $ x, t') end
| dest_LAM _ = raise Match;
fun Case1_tr' [Const(\<^const_syntax>‹branch›,_) $ p, r] =
let val (v, t) = dest_LAM r in
Syntax.const \<^syntax_const>‹_Case1› $
(Syntax.const \<^syntax_const>‹_match› $ p $ v) $ t
end;
in [(\<^const_syntax>‹Rep_cfun›, K Case1_tr')] end
›
translations
"x" <= "_match (CONST succeed) (_variable x)"
subsection ‹Pattern combinators for data constructors›
type_synonym ('a, 'b) pat = "'a → 'b match"
definition
cpair_pat :: "('a, 'c) pat ⇒ ('b, 'd) pat ⇒ ('a × 'b, 'c × 'd) pat" where
"cpair_pat p1 p2 = (Λ(x, y).
match_bind⋅(p1⋅x)⋅(Λ a. match_bind⋅(p2⋅y)⋅(Λ b. succeed⋅(a, b))))"
definition
spair_pat ::
"('a, 'c) pat ⇒ ('b, 'd) pat ⇒ ('a::pcpo ⊗ 'b::pcpo, 'c × 'd) pat" where
"spair_pat p1 p2 = (Λ(:x, y:). cpair_pat p1 p2⋅(x, y))"
definition
sinl_pat :: "('a, 'c) pat ⇒ ('a::pcpo ⊕ 'b::pcpo, 'c) pat" where
"sinl_pat p = sscase⋅p⋅(Λ x. fail)"
definition
sinr_pat :: "('b, 'c) pat ⇒ ('a::pcpo ⊕ 'b::pcpo, 'c) pat" where
"sinr_pat p = sscase⋅(Λ x. fail)⋅p"
definition
up_pat :: "('a, 'b) pat ⇒ ('a u, 'b) pat" where
"up_pat p = fup⋅p"
definition
TT_pat :: "(tr, unit) pat" where
"TT_pat = (Λ b. If b then succeed⋅() else fail)"
definition
FF_pat :: "(tr, unit) pat" where
"FF_pat = (Λ b. If b then fail else succeed⋅())"
definition
ONE_pat :: "(one, unit) pat" where
"ONE_pat = (Λ ONE. succeed⋅())"
text ‹Parse translations (patterns)›
translations
"_pat (XCONST Pair x y)" => "CONST cpair_pat (_pat x) (_pat y)"
"_pat (XCONST spair⋅x⋅y)" => "CONST spair_pat (_pat x) (_pat y)"
"_pat (XCONST sinl⋅x)" => "CONST sinl_pat (_pat x)"
"_pat (XCONST sinr⋅x)" => "CONST sinr_pat (_pat x)"
"_pat (XCONST up⋅x)" => "CONST up_pat (_pat x)"
"_pat (XCONST TT)" => "CONST TT_pat"
"_pat (XCONST FF)" => "CONST FF_pat"
"_pat (XCONST ONE)" => "CONST ONE_pat"
text ‹CONST version is also needed for constructors with special syntax›
translations
"_pat (CONST Pair x y)" => "CONST cpair_pat (_pat x) (_pat y)"
"_pat (CONST spair⋅x⋅y)" => "CONST spair_pat (_pat x) (_pat y)"
text ‹Parse translations (variables)›
translations
"_variable (XCONST Pair x y) r" => "_variable (_args x y) r"
"_variable (XCONST spair⋅x⋅y) r" => "_variable (_args x y) r"
"_variable (XCONST sinl⋅x) r" => "_variable x r"
"_variable (XCONST sinr⋅x) r" => "_variable x r"
"_variable (XCONST up⋅x) r" => "_variable x r"
"_variable (XCONST TT) r" => "_variable _noargs r"
"_variable (XCONST FF) r" => "_variable _noargs r"
"_variable (XCONST ONE) r" => "_variable _noargs r"
translations
"_variable (CONST Pair x y) r" => "_variable (_args x y) r"
"_variable (CONST spair⋅x⋅y) r" => "_variable (_args x y) r"
text ‹Print translations›
translations
"CONST Pair (_match p1 v1) (_match p2 v2)"
<= "_match (CONST cpair_pat p1 p2) (_args v1 v2)"
"CONST spair⋅(_match p1 v1)⋅(_match p2 v2)"
<= "_match (CONST spair_pat p1 p2) (_args v1 v2)"
"CONST sinl⋅(_match p1 v1)" <= "_match (CONST sinl_pat p1) v1"
"CONST sinr⋅(_match p1 v1)" <= "_match (CONST sinr_pat p1) v1"
"CONST up⋅(_match p1 v1)" <= "_match (CONST up_pat p1) v1"
"CONST TT" <= "_match (CONST TT_pat) _noargs"
"CONST FF" <= "_match (CONST FF_pat) _noargs"
"CONST ONE" <= "_match (CONST ONE_pat) _noargs"
lemma cpair_pat1:
"branch p⋅r⋅x = ⊥ ⟹ branch (cpair_pat p q)⋅(csplit⋅r)⋅(x, y) = ⊥"
apply (simp add: branch_def cpair_pat_def)
apply (cases "p⋅x", simp_all)
done
lemma cpair_pat2:
"branch p⋅r⋅x = fail ⟹ branch (cpair_pat p q)⋅(csplit⋅r)⋅(x, y) = fail"
apply (simp add: branch_def cpair_pat_def)
apply (cases "p⋅x", simp_all)
done
lemma cpair_pat3:
"branch p⋅r⋅x = succeed⋅s ⟹
branch (cpair_pat p q)⋅(csplit⋅r)⋅(x, y) = branch q⋅s⋅y"
apply (simp add: branch_def cpair_pat_def)
apply (cases "p⋅x", simp_all)
apply (cases "q⋅y", simp_all)
done
lemmas cpair_pat [simp] =
cpair_pat1 cpair_pat2 cpair_pat3
lemma spair_pat [simp]:
"branch (spair_pat p1 p2)⋅r⋅⊥ = ⊥"
"⟦x ≠ ⊥; y ≠ ⊥⟧
⟹ branch (spair_pat p1 p2)⋅r⋅(:x, y:) =
branch (cpair_pat p1 p2)⋅r⋅(x, y)"
by (simp_all add: branch_def spair_pat_def)
lemma sinl_pat [simp]:
"branch (sinl_pat p)⋅r⋅⊥ = ⊥"
"x ≠ ⊥ ⟹ branch (sinl_pat p)⋅r⋅(sinl⋅x) = branch p⋅r⋅x"
"y ≠ ⊥ ⟹ branch (sinl_pat p)⋅r⋅(sinr⋅y) = fail"
by (simp_all add: branch_def sinl_pat_def)
lemma sinr_pat [simp]:
"branch (sinr_pat p)⋅r⋅⊥ = ⊥"
"x ≠ ⊥ ⟹ branch (sinr_pat p)⋅r⋅(sinl⋅x) = fail"
"y ≠ ⊥ ⟹ branch (sinr_pat p)⋅r⋅(sinr⋅y) = branch p⋅r⋅y"
by (simp_all add: branch_def sinr_pat_def)
lemma up_pat [simp]:
"branch (up_pat p)⋅r⋅⊥ = ⊥"
"branch (up_pat p)⋅r⋅(up⋅x) = branch p⋅r⋅x"
by (simp_all add: branch_def up_pat_def)
lemma TT_pat [simp]:
"branch TT_pat⋅(unit_when⋅r)⋅⊥ = ⊥"
"branch TT_pat⋅(unit_when⋅r)⋅TT = succeed⋅r"
"branch TT_pat⋅(unit_when⋅r)⋅FF = fail"
by (simp_all add: branch_def TT_pat_def)
lemma FF_pat [simp]:
"branch FF_pat⋅(unit_when⋅r)⋅⊥ = ⊥"
"branch FF_pat⋅(unit_when⋅r)⋅TT = fail"
"branch FF_pat⋅(unit_when⋅r)⋅FF = succeed⋅r"
by (simp_all add: branch_def FF_pat_def)
lemma ONE_pat [simp]:
"branch ONE_pat⋅(unit_when⋅r)⋅⊥ = ⊥"
"branch ONE_pat⋅(unit_when⋅r)⋅ONE = succeed⋅r"
by (simp_all add: branch_def ONE_pat_def)
subsection ‹Wildcards, as-patterns, and lazy patterns›
definition
wild_pat :: "'a → unit match" where
"wild_pat = (Λ x. succeed⋅())"
definition
as_pat :: "('a → 'b match) ⇒ 'a → ('a × 'b) match" where
"as_pat p = (Λ x. match_bind⋅(p⋅x)⋅(Λ a. succeed⋅(x, a)))"
definition
lazy_pat :: "('a → 'b::pcpo match) ⇒ ('a → 'b match)" where
"lazy_pat p = (Λ x. succeed⋅(cases⋅(p⋅x)))"
text ‹Parse translations (patterns)›
translations
"_pat _" => "CONST wild_pat"
text ‹Parse translations (variables)›
translations
"_variable _ r" => "_variable _noargs r"
text ‹Print translations›
translations
"_" <= "_match (CONST wild_pat) _noargs"
lemma wild_pat [simp]: "branch wild_pat⋅(unit_when⋅r)⋅x = succeed⋅r"
by (simp add: branch_def wild_pat_def)
lemma as_pat [simp]:
"branch (as_pat p)⋅(csplit⋅r)⋅x = branch p⋅(r⋅x)⋅x"
apply (simp add: branch_def as_pat_def)
apply (cases "p⋅x", simp_all)
done
lemma lazy_pat [simp]:
"branch p⋅r⋅x = ⊥ ⟹ branch (lazy_pat p)⋅r⋅x = succeed⋅(r⋅⊥)"
"branch p⋅r⋅x = fail ⟹ branch (lazy_pat p)⋅r⋅x = succeed⋅(r⋅⊥)"
"branch p⋅r⋅x = succeed⋅s ⟹ branch (lazy_pat p)⋅r⋅x = succeed⋅s"
apply (simp_all add: branch_def lazy_pat_def)
apply (cases "p⋅x", simp_all)+
done
subsection ‹Examples›
term "Case t of (:up⋅(sinl⋅x), sinr⋅y:) ⇒ (x, y)"
term "Λ t. Case t of up⋅(sinl⋅a) ⇒ a | up⋅(sinr⋅b) ⇒ b"
term "Λ t. Case t of (:up⋅(sinl⋅_), sinr⋅x:) ⇒ x"
subsection ‹ML code for generating definitions›
ML ‹
local open HOLCF_Library in
infixr 6 ->>;
infix 9 ` ;
val beta_rules =
@{thms beta_cfun cont_id cont_const cont2cont_APP cont2cont_LAM'} @
@{thms cont2cont_fst cont2cont_snd cont2cont_Pair};
val beta_ss =
simpset_of (put_simpset HOL_basic_ss \<^context> addsimps (@{thms simp_thms} @ beta_rules));
fun define_consts
(specs : (binding * term * mixfix) list)
(thy : theory)
: (term list * thm list) * theory =
let
fun mk_decl (b, t, mx) = (b, fastype_of t, mx);
val decls = map mk_decl specs;
val thy = Cont_Consts.add_consts decls thy;
fun mk_const (b, T, mx) = Const (Sign.full_name thy b, T);
val consts = map mk_const decls;
fun mk_def c (b, t, mx) =
(Thm.def_binding b, Logic.mk_equals (c, t));
val defs = map2 mk_def consts specs;
val (def_thms, thy) = fold_map Global_Theory.add_def defs thy;
in
((consts, def_thms), thy)
end;
fun prove
(thy : theory)
(defs : thm list)
(goal : term)
(tacs : {prems: thm list, context: Proof.context} -> tactic list)
: thm =
let
fun tac {prems, context} =
rewrite_goals_tac context defs THEN
EVERY (tacs {prems = map (rewrite_rule context defs) prems, context = context})
in
Goal.prove_global thy [] [] goal tac
end;
fun get_vars_avoiding
(taken : string list)
(args : (bool * typ) list)
: (term list * term list) =
let
val Ts = map snd args;
val ns = Name.variant_list taken (Old_Datatype_Prop.make_tnames Ts);
val vs = map Free (ns ~~ Ts);
val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
in
(vs, nonlazy)
end;
fun add_pattern_combinators
(bindings : binding list)
(spec : (term * (bool * typ) list) list)
(lhsT : typ)
(exhaust : thm)
(case_const : typ -> term)
(case_rews : thm list)
(thy : theory) =
let
fun mk_pair_pat (p1, p2) =
let
val T1 = fastype_of p1;
val T2 = fastype_of p2;
val (U1, V1) = apsnd dest_matchT (dest_cfunT T1);
val (U2, V2) = apsnd dest_matchT (dest_cfunT T2);
val pat_typ = [T1, T2] --->
(mk_prodT (U1, U2) ->> mk_matchT (mk_prodT (V1, V2)));
val pat_const = Const (\<^const_name>‹cpair_pat›, pat_typ);
in
pat_const $ p1 $ p2
end;
fun mk_tuple_pat [] = succeed_const \<^Type>‹unit›
| mk_tuple_pat ps = foldr1 mk_pair_pat ps;
local
val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
fun pat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
let
val pat_bind = Binding.suffix_name "_pat" bind;
val Ts = map snd args;
val Vs =
(map (K "'t") args)
|> Old_Datatype_Prop.indexify_names
|> Name.variant_list tns
|> map (fn t => TFree (t, \<^sort>‹pcpo›));
val patNs = Old_Datatype_Prop.indexify_names (map (K "pat") args);
val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
val pats = map Free (patNs ~~ patTs);
val fail = mk_fail (mk_tupleT Vs);
val (vs, nonlazy) = get_vars_avoiding patNs args;
val rhs = big_lambdas vs (mk_tuple_pat pats ` mk_tuple vs);
fun one_fun (j, (_, args')) =
let
val (vs', nonlazy) = get_vars_avoiding patNs args';
in if i = j then rhs else big_lambdas vs' fail end;
val funs = map_index one_fun spec;
val body = list_ccomb (case_const (mk_matchT (mk_tupleT Vs)), funs);
in
(pat_bind, lambdas pats body, NoSyn)
end;
in
val ((pat_consts, pat_defs), thy) =
define_consts (map_index pat_eqn (bindings ~~ spec)) thy
end;
local
fun syntax c = Lexicon.mark_const (fst (dest_Const c));
fun app s (l, r) = Ast.mk_appl (Ast.Constant s) [l, r];
val capp = app \<^const_syntax>‹Rep_cfun›;
val capps = Library.foldl capp
fun app_var x = Ast.mk_appl (Ast.Constant "_variable") [x, Ast.Variable "rhs"];
fun app_pat x = Ast.mk_appl (Ast.Constant "_pat") [x];
fun args_list [] = Ast.Constant "_noargs"
| args_list xs = foldr1 (app "_args") xs;
fun one_case_trans (pat, (con, args)) =
let
val cname = Ast.Constant (syntax con);
val pname = Ast.Constant (syntax pat);
val ns = 1 upto length args;
val xs = map (fn n => Ast.Variable ("x"^(string_of_int n))) ns;
val ps = map (fn n => Ast.Variable ("p"^(string_of_int n))) ns;
val vs = map (fn n => Ast.Variable ("v"^(string_of_int n))) ns;
in
[Syntax.Parse_Rule (app_pat (capps (cname, xs)),
Ast.mk_appl pname (map app_pat xs)),
Syntax.Parse_Rule (app_var (capps (cname, xs)),
app_var (args_list xs)),
Syntax.Print_Rule (capps (cname, ListPair.map (app "_match") (ps,vs)),
app "_match" (Ast.mk_appl pname ps, args_list vs))]
end;
val trans_rules : Ast.ast Syntax.trrule list =
maps one_case_trans (pat_consts ~~ spec);
in
val thy = Sign.add_trrules trans_rules thy;
end;
local
val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
val rn = singleton (Name.variant_list tns) "'r";
val R = TFree (rn, \<^sort>‹pcpo›);
fun pat_lhs (pat, args) =
let
val Ts = map snd args;
val Vs =
(map (K "'t") args)
|> Old_Datatype_Prop.indexify_names
|> Name.variant_list (rn::tns)
|> map (fn t => TFree (t, \<^sort>‹pcpo›));
val patNs = Old_Datatype_Prop.indexify_names (map (K "pat") args);
val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
val pats = map Free (patNs ~~ patTs);
val k = Free ("rhs", mk_tupleT Vs ->> R);
val branch1 = \<^Const>‹branch lhsT ‹mk_tupleT Vs› R›;
val fun1 = (branch1 $ list_comb (pat, pats)) ` k;
val branch2 = \<^Const>‹branch ‹mk_tupleT Ts› ‹mk_tupleT Vs› R›;
val fun2 = (branch2 $ mk_tuple_pat pats) ` k;
val taken = "rhs" :: patNs;
in (fun1, fun2, taken) end;
fun pat_strict (pat, (con, args)) =
let
val (fun1, fun2, taken) = pat_lhs (pat, args);
val defs = @{thm branch_def} :: pat_defs;
val goal = mk_trp (mk_strict fun1);
val rules = @{thms match_bind_simps} @ case_rews;
fun tacs ctxt = [simp_tac (put_simpset beta_ss ctxt addsimps rules) 1];
in prove thy defs goal (tacs o #context) end;
fun pat_apps (i, (pat, (con, args))) =
let
val (fun1, fun2, taken) = pat_lhs (pat, args);
fun pat_app (j, (con', args')) =
let
val (vs, nonlazy) = get_vars_avoiding taken args';
val con_app = list_ccomb (con', vs);
val assms = map (mk_trp o mk_defined) nonlazy;
val rhs = if i = j then fun2 ` mk_tuple vs else mk_fail R;
val concl = mk_trp (mk_eq (fun1 ` con_app, rhs));
val goal = Logic.list_implies (assms, concl);
val defs = @{thm branch_def} :: pat_defs;
val rules = @{thms match_bind_simps} @ case_rews;
fun tacs ctxt = [asm_simp_tac (put_simpset beta_ss ctxt addsimps rules) 1];
in prove thy defs goal (tacs o #context) end;
in map_index pat_app spec end;
in
val pat_stricts = map pat_strict (pat_consts ~~ spec);
val pat_apps = flat (map_index pat_apps (pat_consts ~~ spec));
end;
in
(pat_stricts @ pat_apps, thy)
end
end
›
end