Theory Domain_Proofs

(*  Title:      HOL/HOLCF/ex/Domain_Proofs.thy
    Author:     Brian Huffman
*)

section ‹Internal domain package proofs done manually›

theory Domain_Proofs
imports HOLCF
begin

(*

The definitions and proofs below are for the following recursive
datatypes:

domain 'a foo = Foo1 | Foo2 (lazy 'a) (lazy "'a bar")
   and 'a bar = Bar (lazy "'a baz → tr")
   and 'a baz = Baz (lazy "'a foo convex_pd → tr")

*)

(********************************************************************)

subsection ‹Step 1: Define the new type combinators›

text ‹Start with the one-step non-recursive version›

definition
  foo_bar_baz_deflF ::
    "udom defl  udom defl × udom defl × udom defl  udom defl × udom defl × udom defl"
where
  "foo_bar_baz_deflF = (Λ a. Abs_cfun (λ(t1, t2, t3). 
    ( ssum_deflDEFL(one)(sprod_defl(u_defla)(u_deflt2))
    , u_defl(sfun_defl(u_deflt3)DEFL(tr))
    , u_defl(sfun_defl(u_defl(convex_deflt1))DEFL(tr)))))"

lemma foo_bar_baz_deflF_beta:
  "foo_bar_baz_deflFat =
    ( ssum_deflDEFL(one)(sprod_defl(u_defla)(u_defl(fst (snd t))))
    , u_defl(sfun_defl(u_defl(snd (snd t)))DEFL(tr))
    , u_defl(sfun_defl(u_defl(convex_defl(fst t)))DEFL(tr)))"
unfolding foo_bar_baz_deflF_def
by (simp add: split_def)

text ‹Individual type combinators are projected from the fixed point.›

definition foo_defl :: "udom defl  udom defl"
where "foo_defl = (Λ a. fst (fix(foo_bar_baz_deflFa)))"

definition bar_defl :: "udom defl  udom defl"
where "bar_defl = (Λ a. fst (snd (fix(foo_bar_baz_deflFa))))"

definition baz_defl :: "udom defl  udom defl"
where "baz_defl = (Λ a. snd (snd (fix(foo_bar_baz_deflFa))))"

lemma defl_apply_thms:
  "foo_defla = fst (fix(foo_bar_baz_deflFa))"
  "bar_defla = fst (snd (fix(foo_bar_baz_deflFa)))"
  "baz_defla = snd (snd (fix(foo_bar_baz_deflFa)))"
unfolding foo_defl_def bar_defl_def baz_defl_def by simp_all

text ‹Unfold rules for each combinator.›

lemma foo_defl_unfold:
  "foo_defla = ssum_deflDEFL(one)(sprod_defl(u_defla)(u_defl(bar_defla)))"
unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)

lemma bar_defl_unfold: "bar_defla = u_defl(sfun_defl(u_defl(baz_defla))DEFL(tr))"
unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)

lemma baz_defl_unfold: "baz_defla = u_defl(sfun_defl(u_defl(convex_defl(foo_defla)))DEFL(tr))"
unfolding defl_apply_thms by (subst fix_eq, simp add: foo_bar_baz_deflF_beta)

text "The automation for the previous steps will be quite similar to
how the fixrec package works."

(********************************************************************)

subsection ‹Step 2: Define types, prove class instances›

text ‹Use pcpodef› with the appropriate type combinator.›

pcpodef 'a foo = "defl_set (foo_deflDEFL('a))"
by (rule defl_set_bottom, rule adm_defl_set)

pcpodef 'a bar = "defl_set (bar_deflDEFL('a))"
by (rule defl_set_bottom, rule adm_defl_set)

pcpodef 'a baz = "defl_set (baz_deflDEFL('a))"
by (rule defl_set_bottom, rule adm_defl_set)

text ‹Prove rep instance using lemma typedef_rep_class›.›

instantiation foo :: ("domain") "domain"
begin

definition emb_foo :: "'a foo  udom"
where "emb_foo  (Λ x. Rep_foo x)"

definition prj_foo :: "udom  'a foo"
where "prj_foo  (Λ y. Abs_foo (cast(foo_deflDEFL('a))y))"

definition defl_foo :: "'a foo itself  udom defl"
where "defl_foo  λa. foo_deflDEFL('a)"

definition
  "(liftemb :: 'a foo u  udom u)  u_mapemb"

definition
  "(liftprj :: udom u  'a foo u)  u_mapprj"

definition
  "liftdefl  λ(t::'a foo itself). liftdefl_ofDEFL('a foo)"

instance
apply (rule typedef_domain_class)
apply (rule type_definition_foo)
apply (rule below_foo_def)
apply (rule emb_foo_def)
apply (rule prj_foo_def)
apply (rule defl_foo_def)
apply (rule liftemb_foo_def)
apply (rule liftprj_foo_def)
apply (rule liftdefl_foo_def)
done

end

instantiation bar :: ("domain") "domain"
begin

definition emb_bar :: "'a bar  udom"
where "emb_bar  (Λ x. Rep_bar x)"

definition prj_bar :: "udom  'a bar"
where "prj_bar  (Λ y. Abs_bar (cast(bar_deflDEFL('a))y))"

definition defl_bar :: "'a bar itself  udom defl"
where "defl_bar  λa. bar_deflDEFL('a)"

definition
  "(liftemb :: 'a bar u  udom u)  u_mapemb"

definition
  "(liftprj :: udom u  'a bar u)  u_mapprj"

definition
  "liftdefl  λ(t::'a bar itself). liftdefl_ofDEFL('a bar)"

instance
apply (rule typedef_domain_class)
apply (rule type_definition_bar)
apply (rule below_bar_def)
apply (rule emb_bar_def)
apply (rule prj_bar_def)
apply (rule defl_bar_def)
apply (rule liftemb_bar_def)
apply (rule liftprj_bar_def)
apply (rule liftdefl_bar_def)
done

end

instantiation baz :: ("domain") "domain"
begin

definition emb_baz :: "'a baz  udom"
where "emb_baz  (Λ x. Rep_baz x)"

definition prj_baz :: "udom  'a baz"
where "prj_baz  (Λ y. Abs_baz (cast(baz_deflDEFL('a))y))"

definition defl_baz :: "'a baz itself  udom defl"
where "defl_baz  λa. baz_deflDEFL('a)"

definition
  "(liftemb :: 'a baz u  udom u)  u_mapemb"

definition
  "(liftprj :: udom u  'a baz u)  u_mapprj"

definition
  "liftdefl  λ(t::'a baz itself). liftdefl_ofDEFL('a baz)"

instance
apply (rule typedef_domain_class)
apply (rule type_definition_baz)
apply (rule below_baz_def)
apply (rule emb_baz_def)
apply (rule prj_baz_def)
apply (rule defl_baz_def)
apply (rule liftemb_baz_def)
apply (rule liftprj_baz_def)
apply (rule liftdefl_baz_def)
done

end

text ‹Prove DEFL rules using lemma typedef_DEFL›.›

lemma DEFL_foo: "DEFL('a foo) = foo_deflDEFL('a)"
apply (rule typedef_DEFL)
apply (rule defl_foo_def)
done

lemma DEFL_bar: "DEFL('a bar) = bar_deflDEFL('a)"
apply (rule typedef_DEFL)
apply (rule defl_bar_def)
done

lemma DEFL_baz: "DEFL('a baz) = baz_deflDEFL('a)"
apply (rule typedef_DEFL)
apply (rule defl_baz_def)
done

text ‹Prove DEFL equations using type combinator unfold lemmas.›

lemma DEFL_foo': "DEFL('a foo) = DEFL(one  'a  ('a bar))"
unfolding DEFL_foo DEFL_bar DEFL_baz domain_defl_simps
by (rule foo_defl_unfold)

lemma DEFL_bar': "DEFL('a bar) = DEFL(('a baz  tr))"
unfolding DEFL_foo DEFL_bar DEFL_baz domain_defl_simps
by (rule bar_defl_unfold)

lemma DEFL_baz': "DEFL('a baz) = DEFL(('a foo convex_pd  tr))"
unfolding DEFL_foo DEFL_bar DEFL_baz domain_defl_simps
by (rule baz_defl_unfold)

(********************************************************************)

subsection ‹Step 3: Define rep and abs functions›

text ‹Define them all using prj› and emb›!›

definition foo_rep :: "'a foo  one  ('a  ('a bar))"
where "foo_rep  prj oo emb"

definition foo_abs :: "one  ('a  ('a bar))  'a foo"
where "foo_abs  prj oo emb"

definition bar_rep :: "'a bar  ('a baz  tr)"
where "bar_rep  prj oo emb"

definition bar_abs :: "('a baz  tr)  'a bar"
where "bar_abs  prj oo emb"

definition baz_rep :: "'a baz  ('a foo convex_pd  tr)"
where "baz_rep  prj oo emb"

definition baz_abs :: "('a foo convex_pd  tr)  'a baz"
where "baz_abs  prj oo emb"

text ‹Prove isomorphism rules.›

lemma foo_abs_iso: "foo_rep(foo_absx) = x"
by (rule domain_abs_iso [OF DEFL_foo' foo_abs_def foo_rep_def])

lemma foo_rep_iso: "foo_abs(foo_repx) = x"
by (rule domain_rep_iso [OF DEFL_foo' foo_abs_def foo_rep_def])

lemma bar_abs_iso: "bar_rep(bar_absx) = x"
by (rule domain_abs_iso [OF DEFL_bar' bar_abs_def bar_rep_def])

lemma bar_rep_iso: "bar_abs(bar_repx) = x"
by (rule domain_rep_iso [OF DEFL_bar' bar_abs_def bar_rep_def])

lemma baz_abs_iso: "baz_rep(baz_absx) = x"
by (rule domain_abs_iso [OF DEFL_baz' baz_abs_def baz_rep_def])

lemma baz_rep_iso: "baz_abs(baz_repx) = x"
by (rule domain_rep_iso [OF DEFL_baz' baz_abs_def baz_rep_def])

text ‹Prove isodefl rules using isodefl_coerce›.›

lemma isodefl_foo_abs:
  "isodefl d t  isodefl (foo_abs oo d oo foo_rep) t"
by (rule isodefl_abs_rep [OF DEFL_foo' foo_abs_def foo_rep_def])

lemma isodefl_bar_abs:
  "isodefl d t  isodefl (bar_abs oo d oo bar_rep) t"
by (rule isodefl_abs_rep [OF DEFL_bar' bar_abs_def bar_rep_def])

lemma isodefl_baz_abs:
  "isodefl d t  isodefl (baz_abs oo d oo baz_rep) t"
by (rule isodefl_abs_rep [OF DEFL_baz' baz_abs_def baz_rep_def])

(********************************************************************)

subsection ‹Step 4: Define map functions, prove isodefl property›

text ‹Start with the one-step non-recursive version.›

text ‹Note that the type of the map function depends on which
variables are used in positive and negative positions.›

definition
  foo_bar_baz_mapF ::
    "('a  'b) 
     ('a foo  'b foo) × ('a bar  'b bar) × ('b baz  'a baz) 
     ('a foo  'b foo) × ('a bar  'b bar) × ('b baz  'a baz)"
where
  "foo_bar_baz_mapF = (Λ f. Abs_cfun (λ(d1, d2, d3).
    (
      foo_abs oo
        ssum_mapID(sprod_map(u_mapf)(u_mapd2))
          oo foo_rep
    ,
      bar_abs oo u_map(cfun_mapd3ID) oo bar_rep
    ,
      baz_abs oo u_map(cfun_map(convex_mapd1)ID) oo baz_rep
    )))"

lemma foo_bar_baz_mapF_beta:
  "foo_bar_baz_mapFfd =
    (
      foo_abs oo
        ssum_mapID(sprod_map(u_mapf)(u_map(fst (snd d))))
          oo foo_rep
    ,
      bar_abs oo u_map(cfun_map(snd (snd d))ID) oo bar_rep
    ,
      baz_abs oo u_map(cfun_map(convex_map(fst d))ID) oo baz_rep
    )"
unfolding foo_bar_baz_mapF_def
by (simp add: split_def)

text ‹Individual map functions are projected from the fixed point.›

definition foo_map :: "('a  'b)  ('a foo  'b foo)"
where "foo_map = (Λ f. fst (fix(foo_bar_baz_mapFf)))"

definition bar_map :: "('a  'b)  ('a bar  'b bar)"
where "bar_map = (Λ f. fst (snd (fix(foo_bar_baz_mapFf))))"

definition baz_map :: "('a  'b)  ('b baz  'a baz)"
where "baz_map = (Λ f. snd (snd (fix(foo_bar_baz_mapFf))))"

lemma map_apply_thms:
  "foo_mapf = fst (fix(foo_bar_baz_mapFf))"
  "bar_mapf = fst (snd (fix(foo_bar_baz_mapFf)))"
  "baz_mapf = snd (snd (fix(foo_bar_baz_mapFf)))"
unfolding foo_map_def bar_map_def baz_map_def by simp_all

text ‹Prove isodefl rules for all map functions simultaneously.›

lemma isodefl_foo_bar_baz:
  assumes isodefl_d: "isodefl d t"
  shows
  "isodefl (foo_mapd) (foo_deflt) 
  isodefl (bar_mapd) (bar_deflt) 
  isodefl (baz_mapd) (baz_deflt)"
unfolding map_apply_thms defl_apply_thms
 apply (rule parallel_fix_ind)
   apply (intro adm_conj adm_isodefl cont2cont_fst cont2cont_snd cont_id)
  apply (simp only: fst_strict snd_strict isodefl_bottom simp_thms)
 apply (simp only: foo_bar_baz_mapF_beta
                   foo_bar_baz_deflF_beta
                   fst_conv snd_conv)
 apply (elim conjE)
 apply (intro
  conjI
  isodefl_foo_abs
  isodefl_bar_abs
  isodefl_baz_abs
  domain_isodefl
  isodefl_ID_DEFL isodefl_LIFTDEFL
  isodefl_d
 )
 apply assumption+
done

lemmas isodefl_foo = isodefl_foo_bar_baz [THEN conjunct1]
lemmas isodefl_bar = isodefl_foo_bar_baz [THEN conjunct2, THEN conjunct1]
lemmas isodefl_baz = isodefl_foo_bar_baz [THEN conjunct2, THEN conjunct2]

text ‹Prove map ID lemmas, using isodefl_DEFL_imp_ID›

lemma foo_map_ID: "foo_mapID = ID"
apply (rule isodefl_DEFL_imp_ID)
apply (subst DEFL_foo)
apply (rule isodefl_foo)
apply (rule isodefl_ID_DEFL)
done

lemma bar_map_ID: "bar_mapID = ID"
apply (rule isodefl_DEFL_imp_ID)
apply (subst DEFL_bar)
apply (rule isodefl_bar)
apply (rule isodefl_ID_DEFL)
done

lemma baz_map_ID: "baz_mapID = ID"
apply (rule isodefl_DEFL_imp_ID)
apply (subst DEFL_baz)
apply (rule isodefl_baz)
apply (rule isodefl_ID_DEFL)
done

(********************************************************************)

subsection ‹Step 5: Define take functions, prove lub-take lemmas›

definition
  foo_bar_baz_takeF ::
    "('a foo  'a foo) × ('a bar  'a bar) × ('a baz  'a baz) 
     ('a foo  'a foo) × ('a bar  'a bar) × ('a baz  'a baz)"
where
  "foo_bar_baz_takeF = (Λ p.
    ( foo_abs oo
        ssum_mapID(sprod_map(u_mapID)(u_map(fst (snd p))))
          oo foo_rep
    , bar_abs oo
        u_map(cfun_map(snd (snd p))ID) oo bar_rep
    , baz_abs oo
        u_map(cfun_map(convex_map(fst p))ID) oo baz_rep
    ))"

lemma foo_bar_baz_takeF_beta:
  "foo_bar_baz_takeFp =
    ( foo_abs oo
        ssum_mapID(sprod_map(u_mapID)(u_map(fst (snd p))))
          oo foo_rep
    , bar_abs oo
        u_map(cfun_map(snd (snd p))ID) oo bar_rep
    , baz_abs oo
        u_map(cfun_map(convex_map(fst p))ID) oo baz_rep
    )"
unfolding foo_bar_baz_takeF_def by (rule beta_cfun, simp)

definition
  foo_take :: "nat  'a foo  'a foo"
where
  "foo_take = (λn. fst (iterate nfoo_bar_baz_takeF))"

definition
  bar_take :: "nat  'a bar  'a bar"
where
  "bar_take = (λn. fst (snd (iterate nfoo_bar_baz_takeF)))"

definition
  baz_take :: "nat  'a baz  'a baz"
where
  "baz_take = (λn. snd (snd (iterate nfoo_bar_baz_takeF)))"

lemma chain_take_thms: "chain foo_take" "chain bar_take" "chain baz_take"
unfolding foo_take_def bar_take_def baz_take_def
by (intro ch2ch_fst ch2ch_snd chain_iterate)+

lemma take_0_thms: "foo_take 0 = " "bar_take 0 = " "baz_take 0 = "
unfolding foo_take_def bar_take_def baz_take_def
by (simp only: iterate_0 fst_strict snd_strict)+

lemma take_Suc_thms:
  "foo_take (Suc n) =
    foo_abs oo ssum_mapID(sprod_map(u_mapID)(u_map(bar_take n))) oo foo_rep"
  "bar_take (Suc n) =
    bar_abs oo u_map(cfun_map(baz_take n)ID) oo bar_rep"
  "baz_take (Suc n) =
    baz_abs oo u_map(cfun_map(convex_map(foo_take n))ID) oo baz_rep"
unfolding foo_take_def bar_take_def baz_take_def
by (simp only: iterate_Suc foo_bar_baz_takeF_beta fst_conv snd_conv)+

lemma lub_take_lemma:
  "(n. foo_take n, n. bar_take n, n. baz_take n)
    = (foo_map(ID::'a  'a), bar_map(ID::'a  'a), baz_map(ID::'a  'a))"
apply (simp only: lub_Pair [symmetric] ch2ch_Pair chain_take_thms)
apply (simp only: map_apply_thms prod.collapse)
apply (simp only: fix_def2)
apply (rule lub_eq)
apply (rule nat.induct)
apply (simp only: iterate_0 Pair_strict take_0_thms)
apply (simp only: iterate_Suc prod_eq_iff fst_conv snd_conv
                  foo_bar_baz_mapF_beta take_Suc_thms simp_thms)
done

lemma lub_foo_take: "(n. foo_take n) = ID"
apply (rule trans [OF _ foo_map_ID])
using lub_take_lemma
apply (elim Pair_inject)
apply assumption
done

lemma lub_bar_take: "(n. bar_take n) = ID"
apply (rule trans [OF _ bar_map_ID])
using lub_take_lemma
apply (elim Pair_inject)
apply assumption
done

lemma lub_baz_take: "(n. baz_take n) = ID"
apply (rule trans [OF _ baz_map_ID])
using lub_take_lemma
apply (elim Pair_inject)
apply assumption
done

end