Theory Dnat
theory Dnat
imports HOLCF
begin
domain dnat = dzero | dsucc (dpred :: dnat)
definition
iterator :: "dnat → ('a → 'a) → 'a → 'a" where
"iterator = fix⋅(LAM h n f x.
case n of dzero ⇒ x
| dsucc⋅m ⇒ f⋅(h⋅m⋅f⋅x))"
text ‹
\medskip Expand fixed point properties.
›
lemma iterator_def2:
"iterator = (LAM n f x. case n of dzero ⇒ x | dsucc⋅m ⇒ f⋅(iterator⋅m⋅f⋅x))"
apply (rule trans)
apply (rule fix_eq2)
apply (rule iterator_def [THEN eq_reflection])
apply (rule beta_cfun)
apply simp
done
text ‹\medskip Recursive properties.›
lemma iterator1: "iterator⋅UU⋅f⋅x = UU"
apply (subst iterator_def2)
apply simp
done
lemma iterator2: "iterator⋅dzero⋅f⋅x = x"
apply (subst iterator_def2)
apply simp
done
lemma iterator3: "n ≠ UU ⟹ iterator⋅(dsucc⋅n)⋅f⋅x = f⋅(iterator⋅n⋅f⋅x)"
apply (rule trans)
apply (subst iterator_def2)
apply simp
apply (rule refl)
done
lemmas iterator_rews = iterator1 iterator2 iterator3
lemma dnat_flat: "∀x y::dnat. x ⊑ y ⟶ x = UU ∨ x = y"
apply (rule allI)
apply (induct_tac x)
apply fast
apply (rule allI)
apply (case_tac y)
apply simp
apply simp
apply simp
apply (rule allI)
apply (case_tac y)
apply (fast intro!: bottomI)
apply (thin_tac "∀y. dnat ⊑ y ⟶ dnat = UU ∨ dnat = y")
apply simp
apply (simp (no_asm_simp))
apply (drule_tac x="dnata" in spec)
apply simp
done
end