Theory Dagstuhl
theory Dagstuhl
imports "HOLCF-Library.Stream"
begin
axiomatization
y :: "'a"
definition
YS :: "'a stream" where
"YS = fix⋅(LAM x. y && x)"
definition
YYS :: "'a stream" where
"YYS = fix⋅(LAM z. y && y && z)"
lemma YS_def2: "YS = y && YS"
apply (rule trans)
apply (rule fix_eq2)
apply (rule YS_def [THEN eq_reflection])
apply (rule beta_cfun)
apply simp
done
lemma YYS_def2: "YYS = y && y && YYS"
apply (rule trans)
apply (rule fix_eq2)
apply (rule YYS_def [THEN eq_reflection])
apply (rule beta_cfun)
apply simp
done
lemma lemma3: "YYS << y && YYS"
apply (rule YYS_def [THEN eq_reflection, THEN def_fix_ind])
apply simp_all
apply (rule monofun_cfun_arg)
apply (rule monofun_cfun_arg)
apply assumption
done
lemma lemma4: "y && YYS << YYS"
apply (subst YYS_def2)
back
apply (rule monofun_cfun_arg)
apply (rule lemma3)
done
lemma lemma5: "y && YYS = YYS"
apply (rule below_antisym)
apply (rule lemma4)
apply (rule lemma3)
done
lemma wir_moel: "YS = YYS"
apply (rule stream.take_lemma)
apply (induct_tac n)
apply (simp (no_asm))
apply (subst YS_def2)
apply (subst YYS_def2)
apply simp
apply (rule lemma5 [symmetric, THEN subst])
apply (rule refl)
done
lemma lemma6: "YYS << YS"
apply (unfold YYS_def)
apply (rule fix_least)
apply (subst beta_cfun)
apply simp
apply (simp add: YS_def2 [symmetric])
done
lemma lemma7: "YS << YYS"
apply (rule YS_def [THEN eq_reflection, THEN def_fix_ind])
apply simp_all
apply (subst lemma5 [symmetric])
apply (erule monofun_cfun_arg)
done
lemma wir_moel': "YS = YYS"
apply (rule below_antisym)
apply (rule lemma7)
apply (rule lemma6)
done
end