Theory Domain_ex

(*  Title:      HOL/HOLCF/Tutorial/Domain_ex.thy
    Author:     Brian Huffman
*)

section ‹Domain package examples›

theory Domain_ex
imports HOLCF
begin

text ‹Domain constructors are strict by default.›

domain d1 = d1a | d1b "d1" "d1"

lemma "d1by = " by simp

text ‹Constructors can be made lazy using the lazy› keyword.›

domain d2 = d2a | d2b (lazy "d2")

lemma "d2bx  " by simp

text ‹Strict and lazy arguments may be mixed arbitrarily.›

domain d3 = d3a | d3b (lazy "d2") "d2"

lemma "P (d3bxy = )  P (y = )" by simp

text ‹Selectors can be used with strict or lazy constructor arguments.›

domain d4 = d4a | d4b (lazy d4b_left :: "d2") (d4b_right :: "d2")

lemma "y    d4b_left(d4bxy) = x" by simp

text ‹Mixfix declarations can be given for data constructors.›

domain d5 = d5a | d5b (lazy "d5") "d5" (infixl ":#:" 70)

lemma "d5a  x :#: y :#: z" by simp

text ‹Mixfix declarations can also be given for type constructors.›

domain ('a, 'b) lazypair (infixl ":*:" 25) =
  lpair (lazy lfst :: 'a) (lazy lsnd :: 'b) (infixl ":*:" 75)

lemma "p::('a :*: 'b). p  lfstp :*: lsndp"
by (rule allI, case_tac p, simp_all)

text ‹Non-recursive constructor arguments can have arbitrary types.›

domain ('a, 'b) d6 = d6 "int lift" "'a  'b u" (lazy "('a :*: 'b) × ('b  'a)")

text ‹
  Indirect recusion is allowed for sums, products, lifting, and the
  continuous function space.  However, the domain package does not
  generate an induction rule in terms of the constructors.
›

domain 'a d7 = d7a "'a d7  int lift" | d7b "'a  'a d7" | d7c (lazy "'a d7  'a")
  ― ‹Indirect recursion detected, skipping proofs of (co)induction rules›

text ‹Note that d7.induct› is absent.›

text ‹
  Indirect recursion is also allowed using previously-defined datatypes.
›

domain 'a slist = SNil | SCons 'a "'a slist"

domain 'a stree = STip | SBranch "'a stree slist"

text ‹Mutually-recursive datatypes can be defined using the and› keyword.›

domain d8 = d8a | d8b "d9" and d9 = d9a | d9b (lazy "d8")

text ‹Non-regular recursion is not allowed.›
(*
domain ('a, 'b) altlist = ANil | ACons 'a "('b, 'a) altlist"
  -- "illegal direct recursion with different arguments"
domain 'a nest = Nest1 'a | Nest2 "'a nest nest"
  -- "illegal direct recursion with different arguments"
*)

text ‹
  Mutually-recursive datatypes must have all the same type arguments,
  not necessarily in the same order.
›

domain ('a, 'b) list1 = Nil1 | Cons1 'a "('b, 'a) list2"
   and ('b, 'a) list2 = Nil2 | Cons2 'b "('a, 'b) list1"

text ‹Induction rules for flat datatypes have no admissibility side-condition.›

domain 'a flattree = Tip | Branch "'a flattree" "'a flattree"

lemma "P ; P Tip; x y. x  ; y  ; P x; P y  P (Branchxy)  P x"
by (rule flattree.induct) ― ‹no admissibility requirement›

text ‹Trivial datatypes will produce a warning message.›

domain triv = Triv triv triv
  ― ‹domain Domain_ex.triv› is empty!›

lemma "(x::triv) = " by (induct x, simp_all)

text ‹Lazy constructor arguments may have unpointed types.›

domain natlist = nnil | ncons (lazy "nat discr") natlist

text ‹Class constraints may be given for type parameters on the LHS.›

domain ('a::predomain) box = Box (lazy 'a)

domain ('a::countable) stream = snil | scons (lazy "'a discr") "'a stream"


subsection ‹Generated constants and theorems›

domain 'a tree = Leaf (lazy 'a) | Node (left :: "'a tree") (right :: "'a tree")

lemmas tree_abs_bottom_iff =
  iso.abs_bottom_iff [OF iso.intro [OF tree.abs_iso tree.rep_iso]]

text ‹Rules about ismorphism›
term tree_rep
term tree_abs
thm tree.rep_iso
thm tree.abs_iso
thm tree.iso_rews

text ‹Rules about constructors›
term Leaf
term Node
thm Leaf_def Node_def
thm tree.nchotomy
thm tree.exhaust
thm tree.compacts
thm tree.con_rews
thm tree.dist_les
thm tree.dist_eqs
thm tree.inverts
thm tree.injects

text ‹Rules about case combinator›
term tree_case
thm tree.tree_case_def
thm tree.case_rews

text ‹Rules about selectors›
term left
term right
thm tree.sel_rews

text ‹Rules about discriminators›
term is_Leaf
term is_Node
thm tree.dis_rews

text ‹Rules about monadic pattern match combinators›
term match_Leaf
term match_Node
thm tree.match_rews

text ‹Rules about take function›
term tree_take
thm tree.take_def
thm tree.take_0
thm tree.take_Suc
thm tree.take_rews
thm tree.chain_take
thm tree.take_take
thm tree.deflation_take
thm tree.take_below
thm tree.take_lemma
thm tree.lub_take
thm tree.reach
thm tree.finite_induct

text ‹Rules about finiteness predicate›
term tree_finite
thm tree.finite_def
thm tree.finite (* only generated for flat datatypes *)

text ‹Rules about bisimulation predicate›
term tree_bisim
thm tree.bisim_def
thm tree.coinduct

text ‹Induction rule›
thm tree.induct


subsection ‹Known bugs›

text ‹Declaring a mixfix with spaces causes some strange parse errors.›
(*
domain xx = xx ("x y")
  -- "Inner syntax error: unexpected end of input"
*)

end