Theory Bool_Discrete
section ‹Discrete cpo instance for booleans›
theory Bool_Discrete
imports HOLCF
begin
text ‹Discrete cpo instance for \<^typ>‹bool›.›
instantiation bool :: discrete_cpo
begin
definition below_bool_def:
"(x::bool) ⊑ y ⟷ x = y"
instance proof
qed (rule below_bool_def)
end
text ‹
TODO: implement a command to automate discrete predomain instances.
›
instantiation bool :: predomain
begin
definition
"(liftemb :: bool u → udom u) ≡ liftemb oo u_map⋅(Λ x. Discr x)"
definition
"(liftprj :: udom u → bool u) ≡ u_map⋅(Λ y. undiscr y) oo liftprj"
definition
"liftdefl ≡ (λ(t::bool itself). LIFTDEFL(bool discr))"
instance proof
show "ep_pair liftemb (liftprj :: udom u → bool u)"
unfolding liftemb_bool_def liftprj_bool_def
apply (rule ep_pair_comp)
apply (rule ep_pair_u_map)
apply (simp add: ep_pair.intro)
apply (rule predomain_ep)
done
show "cast⋅LIFTDEFL(bool) = liftemb oo (liftprj :: udom u → bool u)"
unfolding liftemb_bool_def liftprj_bool_def liftdefl_bool_def
apply (simp add: cast_liftdefl cfcomp1 u_map_map)
apply (simp add: ID_def [symmetric] u_map_ID)
done
qed
end
lemma cont2cont_if [simp, cont2cont]:
assumes b: "cont b" and f: "cont f" and g: "cont g"
shows "cont (λx. if b x then f x else g x)"
by (rule cont_apply [OF b cont_discrete_cpo], simp add: f g)
lemma cont2cont_eq [simp, cont2cont]:
fixes f g :: "'a::cpo ⇒ 'b::discrete_cpo"
assumes f: "cont f" and g: "cont g"
shows "cont (λx. f x = g x)"
apply (rule cont_apply [OF f cont_discrete_cpo])
apply (rule cont_apply [OF g cont_discrete_cpo])
apply (rule cont_const)
done
end