Theory veriT_Preprocessing

(*  Title:      HOL/ex/veriT_Preprocessing.thy
    Author:     Jasmin Christian Blanchette, Inria, LORIA, MPII
*)

section ‹Proof Reconstruction for veriT's Preprocessing›

theory veriT_Preprocessing
imports Main
begin

declare [[eta_contract = false]]

lemma
  some_All_iffI: "p (SOME x. ¬ p x) = q  (x. p x) = q" and
  some_Ex_iffI: "p (SOME x. p x) = q  (x. p x) = q"
  by (metis (full_types) someI_ex)+

ML fun mk_prod1 bound_Ts (t, u) =
  HOLogic.pair_const (fastype_of1 (bound_Ts, t)) (fastype_of1 (bound_Ts, u)) $ t $ u;

fun mk_tuple1 bound_Ts = the_default HOLogic.unit o try (foldr1 (mk_prod1 bound_Ts));

fun mk_arg_congN 0 = refl
  | mk_arg_congN 1 = arg_cong
  | mk_arg_congN 2 = @{thm arg_cong2}
  | mk_arg_congN n = arg_cong RS funpow (n - 2) (fn th => @{thm cong} RS th) @{thm cong};

fun mk_let_iffNI ctxt n =
  let
    val ((As, [B]), _) = ctxt
      |> Ctr_Sugar_Util.mk_TFrees n
      ||>> Ctr_Sugar_Util.mk_TFrees 1;

    val ((((ts, us), [p]), [q]), _) = ctxt
      |> Ctr_Sugar_Util.mk_Frees "t" As
      ||>> Ctr_Sugar_Util.mk_Frees "u" As
      ||>> Ctr_Sugar_Util.mk_Frees "p" [As ---> B]
      ||>> Ctr_Sugar_Util.mk_Frees "q" [B];

    val tuple_t = HOLogic.mk_tuple ts;
    val tuple_T = fastype_of tuple_t;

    val lambda_t = HOLogic.tupled_lambda tuple_t (list_comb (p, ts));

    val left_prems = map2 (curry Ctr_Sugar_Util.mk_Trueprop_eq) ts us;
    val right_prem = Ctr_Sugar_Util.mk_Trueprop_eq (list_comb (p, us), q);
    val concl = Ctr_Sugar_Util.mk_Trueprop_eq (ConstLet tuple_T B for tuple_t lambda_t, q);

    val goal = Logic.list_implies (left_prems @ [right_prem], concl);
    val vars = Variable.add_free_names ctxt goal [];
  in
    Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, ...} =>
      HEADGOAL (hyp_subst_tac ctxt) THEN
      Local_Defs.unfold0_tac ctxt @{thms Let_def prod.case} THEN
      HEADGOAL (resolve_tac ctxt [refl]))
  end;

datatype rule_name =
  Refl
| Taut of thm
| Trans of term
| Cong
| Bind
| Sko_Ex
| Sko_All
| Let of term list;

fun str_of_rule_name Refl = "Refl"
  | str_of_rule_name (Taut th) = "Taut[" ^ make_string th ^ "]"
  | str_of_rule_name (Trans t) = "Trans[" ^ Syntax.string_of_term context t ^ "]"
  | str_of_rule_name Cong = "Cong"
  | str_of_rule_name Bind = "Bind"
  | str_of_rule_name Sko_Ex = "Sko_Ex"
  | str_of_rule_name Sko_All = "Sko_All"
  | str_of_rule_name (Let ts) =
    "Let[" ^ commas (map (Syntax.string_of_term context) ts) ^ "]";

datatype node = N of rule_name * node list;

fun lambda_count (Abs (_, _, t)) = lambda_count t + 1
  | lambda_count ((t as Abs _) $ _) = lambda_count t - 1
  | lambda_count ((t as Const_case_prod _ _ _ $ _) $ _) = lambda_count t - 1
  | lambda_count Const_case_prod _ _ _ for t = lambda_count t - 1
  | lambda_count _ = 0;

fun zoom apply =
  let
    fun zo 0 bound_Ts (Abs (r, T, t), Abs (s, U, u)) =
        let val (t', u') = zo 0 (T :: bound_Ts) (t, u) in
          (lambda (Free (r, T)) t', lambda (Free (s, U)) u')
        end
      | zo 0 bound_Ts ((t as Abs (_, T, _)) $ arg, u) =
        let val (t', u') = zo 1 (T :: bound_Ts) (t, u) in
          (t' $ arg, u')
        end
      | zo 0 bound_Ts ((t as Const_case_prod _ _ _ $ _) $ arg, u) =
        let val (t', u') = zo 1 bound_Ts (t, u) in
          (t' $ arg, u')
        end
      | zo 0 bound_Ts tu = apply bound_Ts tu
      | zo n bound_Ts (Const_case_prod A B _ for t, u) =
        let
          val (t', u') = zo (n + 1) bound_Ts (t, u);
          val C = range_type (range_type (fastype_of t'));
        in (Constcase_prod A B C for t', u') end
      | zo n bound_Ts (Abs (s, T, t), u) =
        let val (t', u') = zo (n - 1) (T :: bound_Ts) (t, u) in
          (Abs (s, T, t'), u')
        end
      | zo _ _ (t, u) = raise TERM ("zoom", [t, u]);
  in
    zo 0 []
  end;

fun apply_Trans_left t (lhs, _) = (lhs, t);
fun apply_Trans_right t (_, rhs) = (t, rhs);

fun apply_Cong ary j (lhs, rhs) =
  (case apply2 strip_comb (lhs, rhs) of
    ((c, ts), (d, us)) =>
    if c aconv d andalso length ts = ary andalso length us = ary then (nth ts j, nth us j)
    else raise TERM ("apply_Cong", [lhs, rhs]));

fun apply_Bind (lhs, rhs) =
  (case (lhs, rhs) of
    (Const_All _ for Abs (_, T, t), Const_All _ for Abs (s, U, u)) =>
    (Abs (s, T, t), Abs (s, U, u))
  | (Const_Ex _ for t, Const_Ex _ for u) => (t, u)
  | _ => raise TERM ("apply_Bind", [lhs, rhs]));

fun apply_Sko_Ex (lhs, rhs) =
  (case lhs of
    Const_Ex _ for t as Abs (_, T, _) =>
    (t $ (HOLogic.choice_const T $ t), rhs)
  | _ => raise TERM ("apply_Sko_Ex", [lhs]));

fun apply_Sko_All (lhs, rhs) =
  (case lhs of
    Const_All _ for t as Abs (s, T, body) =>
    (t $ (HOLogic.choice_const T $ Abs (s, T, HOLogic.mk_not body)), rhs)
  | _ => raise TERM ("apply_Sko_All", [lhs]));

fun apply_Let_left ts j (lhs, _) =
  (case lhs of
    Const_Let _ _ for t _ =>
    let val ts0 = HOLogic.strip_tuple t in
      (nth ts0 j, nth ts j)
    end
  | _ => raise TERM ("apply_Let_left", [lhs]));

fun apply_Let_right ts bound_Ts (lhs, rhs) =
  let val t' = mk_tuple1 bound_Ts ts in
    (case lhs of
      Const_Let _ _ for _ u => (u $ t', rhs)
    | _ => raise TERM ("apply_Let_right", [lhs, rhs]))
  end;

fun reconstruct_proof ctxt (lrhs as (_, rhs), N (rule_name, prems)) =
  let
    val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq lrhs);
    val ary = length prems;

    val _ = warning (Syntax.string_of_term context goal);
    val _ = warning (str_of_rule_name rule_name);

    val parents =
      (case (rule_name, prems) of
        (Refl, []) => []
      | (Taut _, []) => []
      | (Trans t, [left_prem, right_prem]) =>
        [reconstruct_proof ctxt (zoom (K (apply_Trans_left t)) lrhs, left_prem),
         reconstruct_proof ctxt (zoom (K (apply_Trans_right t)) (rhs, rhs), right_prem)]
      | (Cong, _) =>
        map_index (fn (j, prem) => reconstruct_proof ctxt (zoom (K (apply_Cong ary j)) lrhs, prem))
          prems
      | (Bind, [prem]) => [reconstruct_proof ctxt (zoom (K apply_Bind) lrhs, prem)]
      | (Sko_Ex, [prem]) => [reconstruct_proof ctxt (zoom (K apply_Sko_Ex) lrhs, prem)]
      | (Sko_All, [prem]) => [reconstruct_proof ctxt (zoom (K apply_Sko_All) lrhs, prem)]
      | (Let ts, prems) =>
        let val (left_prems, right_prem) = split_last prems in
          map2 (fn j => fn prem =>
              reconstruct_proof ctxt (zoom (K (apply_Let_left ts j)) lrhs, prem))
            (0 upto length left_prems - 1) left_prems @
          [reconstruct_proof ctxt (zoom (apply_Let_right ts) lrhs, right_prem)]
        end
      | _ => raise Fail ("Invalid rule: " ^ str_of_rule_name rule_name ^ "/" ^
          string_of_int (length prems)));

    val rule_thms =
      (case rule_name of
        Refl => [refl]
      | Taut th => [th]
      | Trans _ => [trans]
      | Cong => [mk_arg_congN ary]
      | Bind => @{thms arg_cong[of _ _ All] arg_cong[of _ _ Ex]}
      | Sko_Ex => [@{thm some_Ex_iffI}]
      | Sko_All => [@{thm some_All_iffI}]
      | Let ts => [mk_let_iffNI ctxt (length ts)]);

    val num_lams = lambda_count rhs;
    val conged_parents = map (funpow num_lams (fn th => th RS fun_cong)
      #> Local_Defs.unfold0 ctxt @{thms prod.case}) parents;
  in
    Goal.prove_sorry ctxt [] [] goal (fn {context = ctxt, ...} =>
      Local_Defs.unfold0_tac ctxt @{thms prod.case} THEN
      HEADGOAL (REPEAT_DETERM_N num_lams o resolve_tac ctxt [ext] THEN'
      resolve_tac ctxt rule_thms THEN'
      K (Local_Defs.unfold0_tac ctxt @{thms prod.case}) THEN'
      EVERY' (map (resolve_tac ctxt o single) conged_parents)))
  end;

ML val proof0 =
  ((termx :: nat. p x,
    termp (SOME x :: nat. p x)),
   N (Sko_Ex, [N (Refl, [])]));

reconstruct_proof context proof0;

ML val proof1 =
  ((term¬ (x :: nat. y :: nat. p x y),
    term¬ (y :: nat. p (SOME x :: nat. ¬ (y :: nat. p x y)) y)),
   N (Cong, [N (Sko_All, [N (Bind, [N (Refl, [])])])]));

reconstruct_proof context proof1;

ML val proof2 =
  ((termx :: nat. y :: nat. z :: nat. p x y z,
    termx :: nat. p x (SOME y :: nat. z :: nat. p x y z)
        (SOME z :: nat. p x (SOME y :: nat. z :: nat. p x y z) z)),
   N (Bind, [N (Sko_Ex, [N (Sko_Ex, [N (Refl, [])])])]));

reconstruct_proof context proof2

ML val proof3 =
  ((termx :: nat. x :: nat. x :: nat. p x x x,
    termx :: nat. p (SOME x :: nat. p x x x) (SOME x. p x x x) (SOME x. p x x x)),
   N (Bind, [N (Sko_Ex, [N (Sko_Ex, [N (Refl, [])])])]));

reconstruct_proof context proof3

ML val proof4 =
  ((termx :: nat. x :: nat. x :: nat. p x x x,
    termx :: nat. x :: nat. p (SOME x :: nat. p x x x) (SOME x. p x x x) (SOME x. p x x x)),
   N (Bind, [N (Bind, [N (Sko_Ex, [N (Refl, [])])])]));

reconstruct_proof context proof4

ML val proof5 =
  ((termx :: nat. q  (x :: nat. x :: nat. p x x x),
    termx :: nat. q 
        (x :: nat. p (SOME x :: nat. p x x x) (SOME x. p x x x) (SOME x. p x x x))),
   N (Bind, [N (Cong, [N (Refl, []), N (Bind, [N (Sko_Ex, [N (Refl, [])])])])]));

reconstruct_proof context proof5

ML val proof6 =
  ((term¬ (x :: nat. p  (x :: nat. x :: nat. q x x)),
    term¬ (x :: nat. p 
        (x :: nat. q (SOME x :: nat. ¬ q x x) (SOME x. ¬ q x x)))),
   N (Cong, [N (Bind, [N (Cong, [N (Refl, []), N (Bind, [N (Sko_All, [N (Refl, [])])])])])]));

reconstruct_proof context proof6

ML val proof7 =
  ((term¬ ¬ (x. p x),
    term¬ ¬ p (SOME x. p x)),
   N (Cong, [N (Cong, [N (Sko_Ex, [N (Refl, [])])])]));

reconstruct_proof context proof7

ML val proof8 =
  ((term¬ ¬ (let x = Suc x in x = 0),
    term¬ ¬ Suc x = 0),
   N (Cong, [N (Cong, [N (Let [termSuc x], [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof8

ML val proof9 =
  ((term¬ (let x = Suc x in x = 0),
    term¬ Suc x = 0),
   N (Cong, [N (Let [termSuc x], [N (Refl, []), N (Refl, [])])]));

reconstruct_proof context proof9

ML val proof10 =
  ((termx :: nat. p (x + 0),
    termx :: nat. p x),
   N (Bind, [N (Cong, [N (Taut @{thm add_0_right}, [])])]));

reconstruct_proof context proof10;

ML val proof11 =
  ((term¬ (let (x, y) = (Suc y, Suc x) in y = 0),
    term¬ Suc x = 0),
   N (Cong, [N (Let [termSuc y, termSuc x], [N (Refl, []), N (Refl, []),
     N (Refl, [])])]));

reconstruct_proof context proof11

ML val proof12 =
  ((term¬ (let (x, y) = (Suc y, Suc x); (u, v, w) = (y, x, y) in w = 0),
    term¬ Suc x = 0),
   N (Cong, [N (Let [termSuc y, termSuc x], [N (Refl, []), N (Refl, []),
     N (Let [termSuc x, termSuc y, termSuc x],
       [N (Refl, []), N (Refl, []), N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof12

ML val proof13 =
  ((term¬ ¬ (let x = Suc x in x = 0),
    term¬ ¬ Suc x = 0),
   N (Cong, [N (Cong, [N (Let [termSuc x], [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof13

ML val proof14 =
  ((termlet (x, y) = (f (a :: nat), b :: nat) in x > a,
    termf (a :: nat) > a),
   N (Let [termf (a :: nat) :: nat, termb :: nat],
     [N (Cong, [N (Refl, [])]), N (Refl, []), N (Refl, [])]));

reconstruct_proof context proof14

ML val proof15 =
  ((termlet x = (let y = g (z :: nat) in f (y :: nat)) in x = Suc 0,
    termf (g (z :: nat) :: nat) = Suc 0),
   N (Let [termf (g (z :: nat) :: nat) :: nat],
     [N (Let [termg (z :: nat) :: nat], [N (Refl, []), N (Refl, [])]), N (Refl, [])]));

reconstruct_proof context proof15

ML val proof16 =
  ((terma > Suc b,
    terma > Suc b),
   N (Trans terma > Suc b, [N (Refl, []), N (Refl, [])]));

reconstruct_proof context proof16

thm Suc_1
thm numeral_2_eq_2
thm One_nat_def

ML val proof17 =
  ((term2 :: nat,
    termSuc (Suc 0) :: nat),
   N (Trans termSuc 1, [N (Taut @{thm Suc_1[symmetric]}, []), N (Cong,
     [N (Taut @{thm One_nat_def}, [])])]));

reconstruct_proof context proof17

ML val proof18 =
  ((termlet x = a in let y = b in Suc x + y,
    termSuc a + b),
   N (Trans termlet y = b in Suc a + y,
     [N (Let [terma :: nat], [N (Refl, []), N (Refl, [])]),
      N (Let [termb :: nat], [N (Refl, []), N (Refl, [])])]));

reconstruct_proof context proof18

ML val proof19 =
  ((termx. let x = f (x :: nat) :: nat in g x,
    termx. g (f (x :: nat) :: nat)),
   N (Bind, [N (Let [termf :: nat  nat $ Bound 0],
     [N (Refl, []), N (Refl, [])])]));

reconstruct_proof context proof19

ML val proof20 =
  ((termx. let y = Suc 0 in let x = f (x :: nat) :: nat in g x,
    termx. g (f (x :: nat) :: nat)),
   N (Bind, [N (Let [termSuc 0], [N (Refl, []), N (Let [termf (x :: nat) :: nat],
     [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof20

ML val proof21 =
  ((termx :: nat. let x = f x :: nat in let y = x in p y,
    termz :: nat. p (f z :: nat)),
   N (Bind, [N (Let [termf (z :: nat) :: nat],
     [N (Refl, []), N (Let [termf (z :: nat) :: nat],
       [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof21

ML val proof22 =
  ((termx :: nat. let x = f x :: nat in let y = x in p y,
    termx :: nat. p (f x :: nat)),
   N (Bind, [N (Let [termf (x :: nat) :: nat],
     [N (Refl, []), N (Let [termf (x :: nat) :: nat],
       [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof22

ML val proof23 =
  ((termx :: nat. let (x, a) = (f x :: nat, 0 ::nat) in let y = x in p y,
    termz :: nat. p (f z :: nat)),
   N (Bind, [N (Let [termf (z :: nat) :: nat, term0 :: nat],
     [N (Refl, []), N (Refl, []), N (Let [termf (z :: nat) :: nat],
       [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof23

ML val proof24 =
  ((termx :: nat. let (x, a) = (f x :: nat, 0 ::nat) in let y = x in p y,
    termx :: nat. p (f x :: nat)),
   N (Bind, [N (Let [termf (x :: nat) :: nat, term0 :: nat],
     [N (Refl, []), N (Refl, []), N (Let [termf (x :: nat) :: nat],
       [N (Refl, []), N (Refl, [])])])]));

reconstruct_proof context proof24

ML val proof25 =
  ((termlet vr0 = vr1 in let vr1 = vr2 in vr0 + vr1 + vr2 :: nat,
    termvr1 + vr2 + vr2 :: nat),
   N (Trans termlet vr1a = vr2 in vr1 + vr1a + vr2 :: nat,
     [N (Let [termvr1 :: nat], [N (Refl, []), N (Refl, [])]),
      N (Let [termvr2 :: nat], [N (Refl, []), N (Refl, [])])]));

reconstruct_proof context proof25

end